Solve for x
x=-2y-3z
Solve for y
y=\frac{-x-3z}{2}
Share
Copied to clipboard
2x+4y+6z=x+2y+3z+0
Combine 3z and 3z to get 6z.
2x+4y+6z=x+2y+3z
Anything plus zero gives itself.
2x+4y+6z-x=2y+3z
Subtract x from both sides.
x+4y+6z=2y+3z
Combine 2x and -x to get x.
x+6z=2y+3z-4y
Subtract 4y from both sides.
x+6z=-2y+3z
Combine 2y and -4y to get -2y.
x=-2y+3z-6z
Subtract 6z from both sides.
x=-2y-3z
Combine 3z and -6z to get -3z.
2x+4y+6z=x+2y+3z+0
Combine 3z and 3z to get 6z.
2x+4y+6z=x+2y+3z
Anything plus zero gives itself.
2x+4y+6z-2y=x+3z
Subtract 2y from both sides.
2x+2y+6z=x+3z
Combine 4y and -2y to get 2y.
2y+6z=x+3z-2x
Subtract 2x from both sides.
2y+6z=-x+3z
Combine x and -2x to get -x.
2y=-x+3z-6z
Subtract 6z from both sides.
2y=-x-3z
Combine 3z and -6z to get -3z.
\frac{2y}{2}=\frac{-x-3z}{2}
Divide both sides by 2.
y=\frac{-x-3z}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}