Solve for R
R=-\frac{3\left(5x+9\right)}{8\left(x-6\right)}
x\neq 6
Solve for x
x=-\frac{3\left(9-16R\right)}{8R+15}
R\neq -\frac{15}{8}
Graph
Share
Copied to clipboard
6x+9x+27=8\left(6-x\right)R
Multiply both sides of the equation by 3.
15x+27=8\left(6-x\right)R
Combine 6x and 9x to get 15x.
15x+27=\left(48-8x\right)R
Use the distributive property to multiply 8 by 6-x.
15x+27=48R-8xR
Use the distributive property to multiply 48-8x by R.
48R-8xR=15x+27
Swap sides so that all variable terms are on the left hand side.
\left(48-8x\right)R=15x+27
Combine all terms containing R.
\frac{\left(48-8x\right)R}{48-8x}=\frac{15x+27}{48-8x}
Divide both sides by 48-8x.
R=\frac{15x+27}{48-8x}
Dividing by 48-8x undoes the multiplication by 48-8x.
R=\frac{3\left(5x+9\right)}{8\left(6-x\right)}
Divide 15x+27 by 48-8x.
6x+9x+27=8\left(6-x\right)R
Multiply both sides of the equation by 3.
15x+27=8\left(6-x\right)R
Combine 6x and 9x to get 15x.
15x+27=\left(48-8x\right)R
Use the distributive property to multiply 8 by 6-x.
15x+27=48R-8xR
Use the distributive property to multiply 48-8x by R.
15x+27+8xR=48R
Add 8xR to both sides.
15x+8xR=48R-27
Subtract 27 from both sides.
\left(15+8R\right)x=48R-27
Combine all terms containing x.
\left(8R+15\right)x=48R-27
The equation is in standard form.
\frac{\left(8R+15\right)x}{8R+15}=\frac{48R-27}{8R+15}
Divide both sides by 15+8R.
x=\frac{48R-27}{8R+15}
Dividing by 15+8R undoes the multiplication by 15+8R.
x=\frac{3\left(16R-9\right)}{8R+15}
Divide 48R-27 by 15+8R.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}