Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+3-x^{2}=-2x
Subtract x^{2} from both sides.
2x+3-x^{2}+2x=0
Add 2x to both sides.
4x+3-x^{2}=0
Combine 2x and 2x to get 4x.
-x^{2}+4x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square 4.
x=\frac{-4±\sqrt{16+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-4±\sqrt{16+12}}{2\left(-1\right)}
Multiply 4 times 3.
x=\frac{-4±\sqrt{28}}{2\left(-1\right)}
Add 16 to 12.
x=\frac{-4±2\sqrt{7}}{2\left(-1\right)}
Take the square root of 28.
x=\frac{-4±2\sqrt{7}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{7}-4}{-2}
Now solve the equation x=\frac{-4±2\sqrt{7}}{-2} when ± is plus. Add -4 to 2\sqrt{7}.
x=2-\sqrt{7}
Divide -4+2\sqrt{7} by -2.
x=\frac{-2\sqrt{7}-4}{-2}
Now solve the equation x=\frac{-4±2\sqrt{7}}{-2} when ± is minus. Subtract 2\sqrt{7} from -4.
x=\sqrt{7}+2
Divide -4-2\sqrt{7} by -2.
x=2-\sqrt{7} x=\sqrt{7}+2
The equation is now solved.
2x+3-x^{2}=-2x
Subtract x^{2} from both sides.
2x+3-x^{2}+2x=0
Add 2x to both sides.
4x+3-x^{2}=0
Combine 2x and 2x to get 4x.
4x-x^{2}=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
-x^{2}+4x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+4x}{-1}=-\frac{3}{-1}
Divide both sides by -1.
x^{2}+\frac{4}{-1}x=-\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-4x=-\frac{3}{-1}
Divide 4 by -1.
x^{2}-4x=3
Divide -3 by -1.
x^{2}-4x+\left(-2\right)^{2}=3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=3+4
Square -2.
x^{2}-4x+4=7
Add 3 to 4.
\left(x-2\right)^{2}=7
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x-2=\sqrt{7} x-2=-\sqrt{7}
Simplify.
x=\sqrt{7}+2 x=2-\sqrt{7}
Add 2 to both sides of the equation.