Solve for t
t=x+y+z
Solve for x
x=-\left(y+z-t\right)
Share
Copied to clipboard
2y+2z-2t=-2x
Subtract 2x from both sides. Anything subtracted from zero gives its negation.
2z-2t=-2x-2y
Subtract 2y from both sides.
-2t=-2x-2y-2z
Subtract 2z from both sides.
\frac{-2t}{-2}=\frac{-2x-2y-2z}{-2}
Divide both sides by -2.
t=\frac{-2x-2y-2z}{-2}
Dividing by -2 undoes the multiplication by -2.
t=x+y+z
Divide -2x-2y-2z by -2.
2x+2z-2t=-2y
Subtract 2y from both sides. Anything subtracted from zero gives its negation.
2x-2t=-2y-2z
Subtract 2z from both sides.
2x=-2y-2z+2t
Add 2t to both sides.
2x=2t-2z-2y
The equation is in standard form.
\frac{2x}{2}=\frac{2t-2z-2y}{2}
Divide both sides by 2.
x=\frac{2t-2z-2y}{2}
Dividing by 2 undoes the multiplication by 2.
x=t-z-y
Divide -2y-2z+2t by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}