Solve for x
x=\frac{5z}{2}+\frac{1}{4}
Solve for z
z=\frac{2x}{5}-\frac{1}{10}
Share
Copied to clipboard
2x+\frac{1}{2}-2z-3z=1
Use the distributive property to multiply 2 by \frac{1}{4}-z.
2x+\frac{1}{2}-5z=1
Combine -2z and -3z to get -5z.
2x-5z=1-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
2x-5z=\frac{1}{2}
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
2x=\frac{1}{2}+5z
Add 5z to both sides.
2x=5z+\frac{1}{2}
The equation is in standard form.
\frac{2x}{2}=\frac{5z+\frac{1}{2}}{2}
Divide both sides by 2.
x=\frac{5z+\frac{1}{2}}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{5z}{2}+\frac{1}{4}
Divide \frac{1}{2}+5z by 2.
2x+\frac{1}{2}-2z-3z=1
Use the distributive property to multiply 2 by \frac{1}{4}-z.
2x+\frac{1}{2}-5z=1
Combine -2z and -3z to get -5z.
\frac{1}{2}-5z=1-2x
Subtract 2x from both sides.
-5z=1-2x-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-5z=\frac{1}{2}-2x
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
\frac{-5z}{-5}=\frac{\frac{1}{2}-2x}{-5}
Divide both sides by -5.
z=\frac{\frac{1}{2}-2x}{-5}
Dividing by -5 undoes the multiplication by -5.
z=\frac{2x}{5}-\frac{1}{10}
Divide \frac{1}{2}-2x by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}