Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

2x\times 6z+6y=\frac{2}{3}x\times 6z+2y\times 6z+6z\times \frac{5}{2}
Multiply both sides of the equation by 6z, the least common multiple of z,3,2.
12xz+6y=\frac{2}{3}x\times 6z+2y\times 6z+6z\times \frac{5}{2}
Multiply 2 and 6 to get 12.
12xz+6y=4xz+2y\times 6z+6z\times \frac{5}{2}
Multiply \frac{2}{3} and 6 to get 4.
12xz+6y=4xz+12yz+6z\times \frac{5}{2}
Multiply 2 and 6 to get 12.
12xz+6y=4xz+12yz+15z
Multiply 6 and \frac{5}{2} to get 15.
12xz+6y-4xz=12yz+15z
Subtract 4xz from both sides.
8xz+6y=12yz+15z
Combine 12xz and -4xz to get 8xz.
8xz=12yz+15z-6y
Subtract 6y from both sides.
8zx=12yz-6y+15z
The equation is in standard form.
\frac{8zx}{8z}=\frac{12yz-6y+15z}{8z}
Divide both sides by 8z.
x=\frac{12yz-6y+15z}{8z}
Dividing by 8z undoes the multiplication by 8z.
x=\frac{3y}{2}-\frac{3y}{4z}+\frac{15}{8}
Divide 12yz+15z-6y by 8z.
2x\times 6z+6y=\frac{2}{3}x\times 6z+2y\times 6z+6z\times \frac{5}{2}
Multiply both sides of the equation by 6z, the least common multiple of z,3,2.
12xz+6y=\frac{2}{3}x\times 6z+2y\times 6z+6z\times \frac{5}{2}
Multiply 2 and 6 to get 12.
12xz+6y=4xz+2y\times 6z+6z\times \frac{5}{2}
Multiply \frac{2}{3} and 6 to get 4.
12xz+6y=4xz+12yz+6z\times \frac{5}{2}
Multiply 2 and 6 to get 12.
12xz+6y=4xz+12yz+15z
Multiply 6 and \frac{5}{2} to get 15.
12xz+6y-12yz=4xz+15z
Subtract 12yz from both sides.
6y-12yz=4xz+15z-12xz
Subtract 12xz from both sides.
6y-12yz=-8xz+15z
Combine 4xz and -12xz to get -8xz.
\left(6-12z\right)y=-8xz+15z
Combine all terms containing y.
\left(6-12z\right)y=15z-8xz
The equation is in standard form.
\frac{\left(6-12z\right)y}{6-12z}=\frac{z\left(15-8x\right)}{6-12z}
Divide both sides by 6-12z.
y=\frac{z\left(15-8x\right)}{6-12z}
Dividing by 6-12z undoes the multiplication by 6-12z.
y=\frac{z\left(15-8x\right)}{6\left(1-2z\right)}
Divide z\left(15-8x\right) by 6-12z.