Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+\frac{3}{2\left(x-2\right)}-\left(3+\frac{3}{2x-4}\right)
Factor 2x-4.
\frac{2x\times 2\left(x-2\right)}{2\left(x-2\right)}+\frac{3}{2\left(x-2\right)}-\left(3+\frac{3}{2x-4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x times \frac{2\left(x-2\right)}{2\left(x-2\right)}.
\frac{2x\times 2\left(x-2\right)+3}{2\left(x-2\right)}-\left(3+\frac{3}{2x-4}\right)
Since \frac{2x\times 2\left(x-2\right)}{2\left(x-2\right)} and \frac{3}{2\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\left(3+\frac{3}{2x-4}\right)
Do the multiplications in 2x\times 2\left(x-2\right)+3.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\left(3+\frac{3}{2\left(x-2\right)}\right)
Factor 2x-4.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\left(\frac{3\times 2\left(x-2\right)}{2\left(x-2\right)}+\frac{3}{2\left(x-2\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2\left(x-2\right)}{2\left(x-2\right)}.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\frac{3\times 2\left(x-2\right)+3}{2\left(x-2\right)}
Since \frac{3\times 2\left(x-2\right)}{2\left(x-2\right)} and \frac{3}{2\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\frac{6x-12+3}{2\left(x-2\right)}
Do the multiplications in 3\times 2\left(x-2\right)+3.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\frac{6x-9}{2\left(x-2\right)}
Combine like terms in 6x-12+3.
\frac{4x^{2}-8x+3-\left(6x-9\right)}{2\left(x-2\right)}
Since \frac{4x^{2}-8x+3}{2\left(x-2\right)} and \frac{6x-9}{2\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-8x+3-6x+9}{2\left(x-2\right)}
Do the multiplications in 4x^{2}-8x+3-\left(6x-9\right).
\frac{4x^{2}-14x+12}{2\left(x-2\right)}
Combine like terms in 4x^{2}-8x+3-6x+9.
\frac{2\left(x-2\right)\left(2x-3\right)}{2\left(x-2\right)}
Factor the expressions that are not already factored in \frac{4x^{2}-14x+12}{2\left(x-2\right)}.
2x-3
Cancel out 2\left(x-2\right) in both numerator and denominator.
2x+\frac{3}{2\left(x-2\right)}-\left(3+\frac{3}{2x-4}\right)
Factor 2x-4.
\frac{2x\times 2\left(x-2\right)}{2\left(x-2\right)}+\frac{3}{2\left(x-2\right)}-\left(3+\frac{3}{2x-4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x times \frac{2\left(x-2\right)}{2\left(x-2\right)}.
\frac{2x\times 2\left(x-2\right)+3}{2\left(x-2\right)}-\left(3+\frac{3}{2x-4}\right)
Since \frac{2x\times 2\left(x-2\right)}{2\left(x-2\right)} and \frac{3}{2\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\left(3+\frac{3}{2x-4}\right)
Do the multiplications in 2x\times 2\left(x-2\right)+3.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\left(3+\frac{3}{2\left(x-2\right)}\right)
Factor 2x-4.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\left(\frac{3\times 2\left(x-2\right)}{2\left(x-2\right)}+\frac{3}{2\left(x-2\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2\left(x-2\right)}{2\left(x-2\right)}.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\frac{3\times 2\left(x-2\right)+3}{2\left(x-2\right)}
Since \frac{3\times 2\left(x-2\right)}{2\left(x-2\right)} and \frac{3}{2\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\frac{6x-12+3}{2\left(x-2\right)}
Do the multiplications in 3\times 2\left(x-2\right)+3.
\frac{4x^{2}-8x+3}{2\left(x-2\right)}-\frac{6x-9}{2\left(x-2\right)}
Combine like terms in 6x-12+3.
\frac{4x^{2}-8x+3-\left(6x-9\right)}{2\left(x-2\right)}
Since \frac{4x^{2}-8x+3}{2\left(x-2\right)} and \frac{6x-9}{2\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-8x+3-6x+9}{2\left(x-2\right)}
Do the multiplications in 4x^{2}-8x+3-\left(6x-9\right).
\frac{4x^{2}-14x+12}{2\left(x-2\right)}
Combine like terms in 4x^{2}-8x+3-6x+9.
\frac{2\left(x-2\right)\left(2x-3\right)}{2\left(x-2\right)}
Factor the expressions that are not already factored in \frac{4x^{2}-14x+12}{2\left(x-2\right)}.
2x-3
Cancel out 2\left(x-2\right) in both numerator and denominator.