Solve for L
\left\{\begin{matrix}L=-h+\frac{h}{w}\text{, }&w\neq 0\\L\in \mathrm{R}\text{, }&h=0\text{ and }w=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=-\frac{Lw}{w-1}\text{, }&w\neq 1\\h\in \mathrm{R}\text{, }&L=0\text{ and }w=1\end{matrix}\right.
Share
Copied to clipboard
w\left(L+h\right)=h
Cancel out 2 on both sides.
wL+wh=h
Use the distributive property to multiply w by L+h.
wL=h-wh
Subtract wh from both sides.
wL=h-hw
The equation is in standard form.
\frac{wL}{w}=\frac{h-hw}{w}
Divide both sides by w.
L=\frac{h-hw}{w}
Dividing by w undoes the multiplication by w.
L=-h+\frac{h}{w}
Divide h-hw by w.
w\left(L+h\right)=h
Cancel out 2 on both sides.
wL+wh=h
Use the distributive property to multiply w by L+h.
wL+wh-h=0
Subtract h from both sides.
wh-h=-wL
Subtract wL from both sides. Anything subtracted from zero gives its negation.
hw-h=-Lw
Reorder the terms.
\left(w-1\right)h=-Lw
Combine all terms containing h.
\frac{\left(w-1\right)h}{w-1}=-\frac{Lw}{w-1}
Divide both sides by w-1.
h=-\frac{Lw}{w-1}
Dividing by w-1 undoes the multiplication by w-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}