Solve for w
w=2
w=-2
Share
Copied to clipboard
w^{2}-4=0
Divide both sides by 2.
\left(w-2\right)\left(w+2\right)=0
Consider w^{2}-4. Rewrite w^{2}-4 as w^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
w=2 w=-2
To find equation solutions, solve w-2=0 and w+2=0.
2w^{2}=8
Add 8 to both sides. Anything plus zero gives itself.
w^{2}=\frac{8}{2}
Divide both sides by 2.
w^{2}=4
Divide 8 by 2 to get 4.
w=2 w=-2
Take the square root of both sides of the equation.
2w^{2}-8=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
w=\frac{0±\sqrt{0^{2}-4\times 2\left(-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{0±\sqrt{-4\times 2\left(-8\right)}}{2\times 2}
Square 0.
w=\frac{0±\sqrt{-8\left(-8\right)}}{2\times 2}
Multiply -4 times 2.
w=\frac{0±\sqrt{64}}{2\times 2}
Multiply -8 times -8.
w=\frac{0±8}{2\times 2}
Take the square root of 64.
w=\frac{0±8}{4}
Multiply 2 times 2.
w=2
Now solve the equation w=\frac{0±8}{4} when ± is plus. Divide 8 by 4.
w=-2
Now solve the equation w=\frac{0±8}{4} when ± is minus. Divide -8 by 4.
w=2 w=-2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}