Solve for u
\left\{\begin{matrix}u=-\frac{v}{2}+2\times \left(\frac{w}{v}\right)^{2}\text{, }&\left(w\geq 0\text{ and }v>0\right)\text{ or }\left(w\leq 0\text{ and }v<0\right)\\u\geq 0\text{, }&w=0\text{ and }v=0\end{matrix}\right.
Share
Copied to clipboard
\sqrt{2u+v}v=2w
Swap sides so that all variable terms are on the left hand side.
\frac{v\sqrt{2u+v}}{v}=\frac{2w}{v}
Divide both sides by v.
\sqrt{2u+v}=\frac{2w}{v}
Dividing by v undoes the multiplication by v.
2u+v=\frac{4w^{2}}{v^{2}}
Square both sides of the equation.
2u+v-v=\frac{4w^{2}}{v^{2}}-v
Subtract v from both sides of the equation.
2u=\frac{4w^{2}}{v^{2}}-v
Subtracting v from itself leaves 0.
2u=-v+\frac{4w^{2}}{v^{2}}
Subtract v from \frac{4w^{2}}{v^{2}}.
\frac{2u}{2}=\frac{-v+\frac{4w^{2}}{v^{2}}}{2}
Divide both sides by 2.
u=\frac{-v+\frac{4w^{2}}{v^{2}}}{2}
Dividing by 2 undoes the multiplication by 2.
u=-\frac{v}{2}+\frac{2w^{2}}{v^{2}}
Divide -v+\frac{4w^{2}}{v^{2}} by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}