Solve for b
b=6\left(u-30\right)
Solve for u
u=\frac{b+180}{6}
Share
Copied to clipboard
5u-b+u=180
Combine 2u and 3u to get 5u.
6u-b=180
Combine 5u and u to get 6u.
-b=180-6u
Subtract 6u from both sides.
\frac{-b}{-1}=\frac{180-6u}{-1}
Divide both sides by -1.
b=\frac{180-6u}{-1}
Dividing by -1 undoes the multiplication by -1.
b=6u-180
Divide 180-6u by -1.
5u-b+u=180
Combine 2u and 3u to get 5u.
6u-b=180
Combine 5u and u to get 6u.
6u=180+b
Add b to both sides.
6u=b+180
The equation is in standard form.
\frac{6u}{6}=\frac{b+180}{6}
Divide both sides by 6.
u=\frac{b+180}{6}
Dividing by 6 undoes the multiplication by 6.
u=\frac{b}{6}+30
Divide 180+b by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}