Solve for u
u=-9v
Solve for v
v=-\frac{u}{9}
Share
Copied to clipboard
2u+3v=-15v
Combine -5v and -10v to get -15v.
2u=-15v-3v
Subtract 3v from both sides.
2u=-18v
Combine -15v and -3v to get -18v.
\frac{2u}{2}=-\frac{18v}{2}
Divide both sides by 2.
u=-\frac{18v}{2}
Dividing by 2 undoes the multiplication by 2.
u=-9v
Divide -18v by 2.
2u+3v=-15v
Combine -5v and -10v to get -15v.
2u+3v+15v=0
Add 15v to both sides.
2u+18v=0
Combine 3v and 15v to get 18v.
18v=-2u
Subtract 2u from both sides. Anything subtracted from zero gives its negation.
\frac{18v}{18}=-\frac{2u}{18}
Divide both sides by 18.
v=-\frac{2u}{18}
Dividing by 18 undoes the multiplication by 18.
v=-\frac{u}{9}
Divide -2u by 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}