Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

2t^{2}-3t+8=5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2t^{2}-3t+8-5=5-5
Subtract 5 from both sides of the equation.
2t^{2}-3t+8-5=0
Subtracting 5 from itself leaves 0.
2t^{2}-3t+3=0
Subtract 5 from 8.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\times 3}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-3\right)±\sqrt{9-4\times 2\times 3}}{2\times 2}
Square -3.
t=\frac{-\left(-3\right)±\sqrt{9-8\times 3}}{2\times 2}
Multiply -4 times 2.
t=\frac{-\left(-3\right)±\sqrt{9-24}}{2\times 2}
Multiply -8 times 3.
t=\frac{-\left(-3\right)±\sqrt{-15}}{2\times 2}
Add 9 to -24.
t=\frac{-\left(-3\right)±\sqrt{15}i}{2\times 2}
Take the square root of -15.
t=\frac{3±\sqrt{15}i}{2\times 2}
The opposite of -3 is 3.
t=\frac{3±\sqrt{15}i}{4}
Multiply 2 times 2.
t=\frac{3+\sqrt{15}i}{4}
Now solve the equation t=\frac{3±\sqrt{15}i}{4} when ± is plus. Add 3 to i\sqrt{15}.
t=\frac{-\sqrt{15}i+3}{4}
Now solve the equation t=\frac{3±\sqrt{15}i}{4} when ± is minus. Subtract i\sqrt{15} from 3.
t=\frac{3+\sqrt{15}i}{4} t=\frac{-\sqrt{15}i+3}{4}
The equation is now solved.
2t^{2}-3t+8=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2t^{2}-3t+8-8=5-8
Subtract 8 from both sides of the equation.
2t^{2}-3t=5-8
Subtracting 8 from itself leaves 0.
2t^{2}-3t=-3
Subtract 8 from 5.
\frac{2t^{2}-3t}{2}=-\frac{3}{2}
Divide both sides by 2.
t^{2}-\frac{3}{2}t=-\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
t^{2}-\frac{3}{2}t+\left(-\frac{3}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{3}{2}t+\frac{9}{16}=-\frac{3}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{3}{2}t+\frac{9}{16}=-\frac{15}{16}
Add -\frac{3}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{3}{4}\right)^{2}=-\frac{15}{16}
Factor t^{2}-\frac{3}{2}t+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{15}{16}}
Take the square root of both sides of the equation.
t-\frac{3}{4}=\frac{\sqrt{15}i}{4} t-\frac{3}{4}=-\frac{\sqrt{15}i}{4}
Simplify.
t=\frac{3+\sqrt{15}i}{4} t=\frac{-\sqrt{15}i+3}{4}
Add \frac{3}{4} to both sides of the equation.