Solve for t
t=\frac{-1+\sqrt{71}i}{4}\approx -0.25+2.106537443i
t=\frac{-\sqrt{71}i-1}{4}\approx -0.25-2.106537443i
Share
Copied to clipboard
2t^{2}+9+t=0
Anything times zero gives zero.
2t^{2}+t+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-1±\sqrt{1^{2}-4\times 2\times 9}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 1 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-1±\sqrt{1-4\times 2\times 9}}{2\times 2}
Square 1.
t=\frac{-1±\sqrt{1-8\times 9}}{2\times 2}
Multiply -4 times 2.
t=\frac{-1±\sqrt{1-72}}{2\times 2}
Multiply -8 times 9.
t=\frac{-1±\sqrt{-71}}{2\times 2}
Add 1 to -72.
t=\frac{-1±\sqrt{71}i}{2\times 2}
Take the square root of -71.
t=\frac{-1±\sqrt{71}i}{4}
Multiply 2 times 2.
t=\frac{-1+\sqrt{71}i}{4}
Now solve the equation t=\frac{-1±\sqrt{71}i}{4} when ± is plus. Add -1 to i\sqrt{71}.
t=\frac{-\sqrt{71}i-1}{4}
Now solve the equation t=\frac{-1±\sqrt{71}i}{4} when ± is minus. Subtract i\sqrt{71} from -1.
t=\frac{-1+\sqrt{71}i}{4} t=\frac{-\sqrt{71}i-1}{4}
The equation is now solved.
2t^{2}+9+t=0
Anything times zero gives zero.
2t^{2}+t=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{2t^{2}+t}{2}=-\frac{9}{2}
Divide both sides by 2.
t^{2}+\frac{1}{2}t=-\frac{9}{2}
Dividing by 2 undoes the multiplication by 2.
t^{2}+\frac{1}{2}t+\left(\frac{1}{4}\right)^{2}=-\frac{9}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{1}{2}t+\frac{1}{16}=-\frac{9}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{1}{2}t+\frac{1}{16}=-\frac{71}{16}
Add -\frac{9}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{1}{4}\right)^{2}=-\frac{71}{16}
Factor t^{2}+\frac{1}{2}t+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{71}{16}}
Take the square root of both sides of the equation.
t+\frac{1}{4}=\frac{\sqrt{71}i}{4} t+\frac{1}{4}=-\frac{\sqrt{71}i}{4}
Simplify.
t=\frac{-1+\sqrt{71}i}{4} t=\frac{-\sqrt{71}i-1}{4}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}