Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

2t-\left(-5\right)=t^{2}
Subtract -5 from both sides.
2t+5=t^{2}
The opposite of -5 is 5.
2t+5-t^{2}=0
Subtract t^{2} from both sides.
-t^{2}+2t+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-2±\sqrt{4-4\left(-1\right)\times 5}}{2\left(-1\right)}
Square 2.
t=\frac{-2±\sqrt{4+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-2±\sqrt{4+20}}{2\left(-1\right)}
Multiply 4 times 5.
t=\frac{-2±\sqrt{24}}{2\left(-1\right)}
Add 4 to 20.
t=\frac{-2±2\sqrt{6}}{2\left(-1\right)}
Take the square root of 24.
t=\frac{-2±2\sqrt{6}}{-2}
Multiply 2 times -1.
t=\frac{2\sqrt{6}-2}{-2}
Now solve the equation t=\frac{-2±2\sqrt{6}}{-2} when ± is plus. Add -2 to 2\sqrt{6}.
t=1-\sqrt{6}
Divide -2+2\sqrt{6} by -2.
t=\frac{-2\sqrt{6}-2}{-2}
Now solve the equation t=\frac{-2±2\sqrt{6}}{-2} when ± is minus. Subtract 2\sqrt{6} from -2.
t=\sqrt{6}+1
Divide -2-2\sqrt{6} by -2.
t=1-\sqrt{6} t=\sqrt{6}+1
The equation is now solved.
2t-t^{2}=-5
Subtract t^{2} from both sides.
-t^{2}+2t=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-t^{2}+2t}{-1}=-\frac{5}{-1}
Divide both sides by -1.
t^{2}+\frac{2}{-1}t=-\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-2t=-\frac{5}{-1}
Divide 2 by -1.
t^{2}-2t=5
Divide -5 by -1.
t^{2}-2t+1=5+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-2t+1=6
Add 5 to 1.
\left(t-1\right)^{2}=6
Factor t^{2}-2t+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-1\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
t-1=\sqrt{6} t-1=-\sqrt{6}
Simplify.
t=\sqrt{6}+1 t=1-\sqrt{6}
Add 1 to both sides of the equation.