Solve for t
t=1
Share
Copied to clipboard
\left(2t\right)^{2}=\left(\sqrt{4-4t^{2}+\left(2t\right)^{2}}\right)^{2}
Square both sides of the equation.
2^{2}t^{2}=\left(\sqrt{4-4t^{2}+\left(2t\right)^{2}}\right)^{2}
Expand \left(2t\right)^{2}.
4t^{2}=\left(\sqrt{4-4t^{2}+\left(2t\right)^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4t^{2}=\left(\sqrt{4-4t^{2}+2^{2}t^{2}}\right)^{2}
Expand \left(2t\right)^{2}.
4t^{2}=\left(\sqrt{4-4t^{2}+4t^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4t^{2}=\left(\sqrt{4}\right)^{2}
Combine -4t^{2} and 4t^{2} to get 0.
4t^{2}=4
The square of \sqrt{4} is 4.
t^{2}=\frac{4}{4}
Divide both sides by 4.
t^{2}=1
Divide 4 by 4 to get 1.
t^{2}-1=0
Subtract 1 from both sides.
\left(t-1\right)\left(t+1\right)=0
Consider t^{2}-1. Rewrite t^{2}-1 as t^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=1 t=-1
To find equation solutions, solve t-1=0 and t+1=0.
2\times 1=\sqrt{4-4\times 1^{2}+\left(2\times 1\right)^{2}}
Substitute 1 for t in the equation 2t=\sqrt{4-4t^{2}+\left(2t\right)^{2}}.
2=2
Simplify. The value t=1 satisfies the equation.
2\left(-1\right)=\sqrt{4-4\left(-1\right)^{2}+\left(2\left(-1\right)\right)^{2}}
Substitute -1 for t in the equation 2t=\sqrt{4-4t^{2}+\left(2t\right)^{2}}.
-2=2
Simplify. The value t=-1 does not satisfy the equation because the left and the right hand side have opposite signs.
t=1
Equation 2t=\sqrt{4+\left(2t\right)^{2}-4t^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}