Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\left(2t\right)^{2}=\left(\sqrt{4-4t^{2}+\left(2t\right)^{2}}\right)^{2}
Square both sides of the equation.
2^{2}t^{2}=\left(\sqrt{4-4t^{2}+\left(2t\right)^{2}}\right)^{2}
Expand \left(2t\right)^{2}.
4t^{2}=\left(\sqrt{4-4t^{2}+\left(2t\right)^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4t^{2}=\left(\sqrt{4-4t^{2}+2^{2}t^{2}}\right)^{2}
Expand \left(2t\right)^{2}.
4t^{2}=\left(\sqrt{4-4t^{2}+4t^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4t^{2}=\left(\sqrt{4}\right)^{2}
Combine -4t^{2} and 4t^{2} to get 0.
4t^{2}=4
The square of \sqrt{4} is 4.
t^{2}=\frac{4}{4}
Divide both sides by 4.
t^{2}=1
Divide 4 by 4 to get 1.
t^{2}-1=0
Subtract 1 from both sides.
\left(t-1\right)\left(t+1\right)=0
Consider t^{2}-1. Rewrite t^{2}-1 as t^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=1 t=-1
To find equation solutions, solve t-1=0 and t+1=0.
2\times 1=\sqrt{4-4\times 1^{2}+\left(2\times 1\right)^{2}}
Substitute 1 for t in the equation 2t=\sqrt{4-4t^{2}+\left(2t\right)^{2}}.
2=2
Simplify. The value t=1 satisfies the equation.
2\left(-1\right)=\sqrt{4-4\left(-1\right)^{2}+\left(2\left(-1\right)\right)^{2}}
Substitute -1 for t in the equation 2t=\sqrt{4-4t^{2}+\left(2t\right)^{2}}.
-2=2
Simplify. The value t=-1 does not satisfy the equation because the left and the right hand side have opposite signs.
t=1
Equation 2t=\sqrt{4+\left(2t\right)^{2}-4t^{2}} has a unique solution.