Solve for m
m=\frac{3}{2}-\frac{1}{2t}
t\neq 1\text{ and }t\neq 0
Solve for t
t=-\frac{1}{2m-3}
m\neq \frac{3}{2}\text{ and }m\neq 1
Share
Copied to clipboard
2t\left(m-1\right)=t-1
Variable m cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by m-1.
2tm-2t=t-1
Use the distributive property to multiply 2t by m-1.
2tm=t-1+2t
Add 2t to both sides.
2tm=3t-1
Combine t and 2t to get 3t.
\frac{2tm}{2t}=\frac{3t-1}{2t}
Divide both sides by 2t.
m=\frac{3t-1}{2t}
Dividing by 2t undoes the multiplication by 2t.
m=\frac{3}{2}-\frac{1}{2t}
Divide 3t-1 by 2t.
m=\frac{3}{2}-\frac{1}{2t}\text{, }m\neq 1
Variable m cannot be equal to 1.
2t\left(m-1\right)=t-1
Multiply both sides of the equation by m-1.
2tm-2t=t-1
Use the distributive property to multiply 2t by m-1.
2tm-2t-t=-1
Subtract t from both sides.
2tm-3t=-1
Combine -2t and -t to get -3t.
\left(2m-3\right)t=-1
Combine all terms containing t.
\frac{\left(2m-3\right)t}{2m-3}=-\frac{1}{2m-3}
Divide both sides by 2m-3.
t=-\frac{1}{2m-3}
Dividing by 2m-3 undoes the multiplication by 2m-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}