Factor
2s\left(s-3\right)
Evaluate
2s\left(s-3\right)
Share
Copied to clipboard
2\left(s^{2}-3s\right)
Factor out 2.
s\left(s-3\right)
Consider s^{2}-3s. Factor out s.
2s\left(s-3\right)
Rewrite the complete factored expression.
2s^{2}-6s=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
s=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-\left(-6\right)±6}{2\times 2}
Take the square root of \left(-6\right)^{2}.
s=\frac{6±6}{2\times 2}
The opposite of -6 is 6.
s=\frac{6±6}{4}
Multiply 2 times 2.
s=\frac{12}{4}
Now solve the equation s=\frac{6±6}{4} when ± is plus. Add 6 to 6.
s=3
Divide 12 by 4.
s=\frac{0}{4}
Now solve the equation s=\frac{6±6}{4} when ± is minus. Subtract 6 from 6.
s=0
Divide 0 by 4.
2s^{2}-6s=2\left(s-3\right)s
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and 0 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}