Solve for r
r = \frac{\sqrt{73} + 3}{4} \approx 2.886000936
r=\frac{3-\sqrt{73}}{4}\approx -1.386000936
Share
Copied to clipboard
2r^{2}-3r-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-8\right)}}{2\times 2}
Square -3.
r=\frac{-\left(-3\right)±\sqrt{9-8\left(-8\right)}}{2\times 2}
Multiply -4 times 2.
r=\frac{-\left(-3\right)±\sqrt{9+64}}{2\times 2}
Multiply -8 times -8.
r=\frac{-\left(-3\right)±\sqrt{73}}{2\times 2}
Add 9 to 64.
r=\frac{3±\sqrt{73}}{2\times 2}
The opposite of -3 is 3.
r=\frac{3±\sqrt{73}}{4}
Multiply 2 times 2.
r=\frac{\sqrt{73}+3}{4}
Now solve the equation r=\frac{3±\sqrt{73}}{4} when ± is plus. Add 3 to \sqrt{73}.
r=\frac{3-\sqrt{73}}{4}
Now solve the equation r=\frac{3±\sqrt{73}}{4} when ± is minus. Subtract \sqrt{73} from 3.
r=\frac{\sqrt{73}+3}{4} r=\frac{3-\sqrt{73}}{4}
The equation is now solved.
2r^{2}-3r-8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2r^{2}-3r-8-\left(-8\right)=-\left(-8\right)
Add 8 to both sides of the equation.
2r^{2}-3r=-\left(-8\right)
Subtracting -8 from itself leaves 0.
2r^{2}-3r=8
Subtract -8 from 0.
\frac{2r^{2}-3r}{2}=\frac{8}{2}
Divide both sides by 2.
r^{2}-\frac{3}{2}r=\frac{8}{2}
Dividing by 2 undoes the multiplication by 2.
r^{2}-\frac{3}{2}r=4
Divide 8 by 2.
r^{2}-\frac{3}{2}r+\left(-\frac{3}{4}\right)^{2}=4+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-\frac{3}{2}r+\frac{9}{16}=4+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
r^{2}-\frac{3}{2}r+\frac{9}{16}=\frac{73}{16}
Add 4 to \frac{9}{16}.
\left(r-\frac{3}{4}\right)^{2}=\frac{73}{16}
Factor r^{2}-\frac{3}{2}r+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{3}{4}\right)^{2}}=\sqrt{\frac{73}{16}}
Take the square root of both sides of the equation.
r-\frac{3}{4}=\frac{\sqrt{73}}{4} r-\frac{3}{4}=-\frac{\sqrt{73}}{4}
Simplify.
r=\frac{\sqrt{73}+3}{4} r=\frac{3-\sqrt{73}}{4}
Add \frac{3}{4} to both sides of the equation.
x ^ 2 -\frac{3}{2}x -4 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = \frac{3}{2} rs = -4
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{4} - u s = \frac{3}{4} + u
Two numbers r and s sum up to \frac{3}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{3}{2} = \frac{3}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{4} - u) (\frac{3}{4} + u) = -4
To solve for unknown quantity u, substitute these in the product equation rs = -4
\frac{9}{16} - u^2 = -4
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -4-\frac{9}{16} = -\frac{73}{16}
Simplify the expression by subtracting \frac{9}{16} on both sides
u^2 = \frac{73}{16} u = \pm\sqrt{\frac{73}{16}} = \pm \frac{\sqrt{73}}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{4} - \frac{\sqrt{73}}{4} = -1.386 s = \frac{3}{4} + \frac{\sqrt{73}}{4} = 2.886
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}