Solve for r
r=-3
r = \frac{9}{2} = 4\frac{1}{2} = 4.5
Share
Copied to clipboard
2r^{2}-27-3r=0
Subtract 3r from both sides.
2r^{2}-3r-27=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-3 ab=2\left(-27\right)=-54
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2r^{2}+ar+br-27. To find a and b, set up a system to be solved.
1,-54 2,-27 3,-18 6,-9
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -54.
1-54=-53 2-27=-25 3-18=-15 6-9=-3
Calculate the sum for each pair.
a=-9 b=6
The solution is the pair that gives sum -3.
\left(2r^{2}-9r\right)+\left(6r-27\right)
Rewrite 2r^{2}-3r-27 as \left(2r^{2}-9r\right)+\left(6r-27\right).
r\left(2r-9\right)+3\left(2r-9\right)
Factor out r in the first and 3 in the second group.
\left(2r-9\right)\left(r+3\right)
Factor out common term 2r-9 by using distributive property.
r=\frac{9}{2} r=-3
To find equation solutions, solve 2r-9=0 and r+3=0.
2r^{2}-27-3r=0
Subtract 3r from both sides.
2r^{2}-3r-27=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-27\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-27\right)}}{2\times 2}
Square -3.
r=\frac{-\left(-3\right)±\sqrt{9-8\left(-27\right)}}{2\times 2}
Multiply -4 times 2.
r=\frac{-\left(-3\right)±\sqrt{9+216}}{2\times 2}
Multiply -8 times -27.
r=\frac{-\left(-3\right)±\sqrt{225}}{2\times 2}
Add 9 to 216.
r=\frac{-\left(-3\right)±15}{2\times 2}
Take the square root of 225.
r=\frac{3±15}{2\times 2}
The opposite of -3 is 3.
r=\frac{3±15}{4}
Multiply 2 times 2.
r=\frac{18}{4}
Now solve the equation r=\frac{3±15}{4} when ± is plus. Add 3 to 15.
r=\frac{9}{2}
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
r=-\frac{12}{4}
Now solve the equation r=\frac{3±15}{4} when ± is minus. Subtract 15 from 3.
r=-3
Divide -12 by 4.
r=\frac{9}{2} r=-3
The equation is now solved.
2r^{2}-27-3r=0
Subtract 3r from both sides.
2r^{2}-3r=27
Add 27 to both sides. Anything plus zero gives itself.
\frac{2r^{2}-3r}{2}=\frac{27}{2}
Divide both sides by 2.
r^{2}-\frac{3}{2}r=\frac{27}{2}
Dividing by 2 undoes the multiplication by 2.
r^{2}-\frac{3}{2}r+\left(-\frac{3}{4}\right)^{2}=\frac{27}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-\frac{3}{2}r+\frac{9}{16}=\frac{27}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
r^{2}-\frac{3}{2}r+\frac{9}{16}=\frac{225}{16}
Add \frac{27}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(r-\frac{3}{4}\right)^{2}=\frac{225}{16}
Factor r^{2}-\frac{3}{2}r+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{3}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Take the square root of both sides of the equation.
r-\frac{3}{4}=\frac{15}{4} r-\frac{3}{4}=-\frac{15}{4}
Simplify.
r=\frac{9}{2} r=-3
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}