Solve for q
\left\{\begin{matrix}q=-\frac{\pi r\theta }{36\left(r-25\right)}\text{, }&\theta \neq 0\text{ and }r\neq 0\text{ and }r\neq 25\\q\neq 0\text{, }&r=25\text{ and }\theta =0\end{matrix}\right.
Solve for r
r=\frac{900q}{36q+\pi \theta }
\theta \neq -\frac{36q}{\pi }\text{ and }q\neq 0
Share
Copied to clipboard
2r\times 36q+2\pi r\theta =1800q
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 36q.
72rq+2\pi r\theta =1800q
Multiply 2 and 36 to get 72.
72rq+2\pi r\theta -1800q=0
Subtract 1800q from both sides.
72rq-1800q=-2\pi r\theta
Subtract 2\pi r\theta from both sides. Anything subtracted from zero gives its negation.
\left(72r-1800\right)q=-2\pi r\theta
Combine all terms containing q.
\frac{\left(72r-1800\right)q}{72r-1800}=-\frac{2\pi r\theta }{72r-1800}
Divide both sides by 72r-1800.
q=-\frac{2\pi r\theta }{72r-1800}
Dividing by 72r-1800 undoes the multiplication by 72r-1800.
q=-\frac{\pi r\theta }{36\left(r-25\right)}
Divide -2\pi r\theta by 72r-1800.
q=-\frac{\pi r\theta }{36\left(r-25\right)}\text{, }q\neq 0
Variable q cannot be equal to 0.
2r\times 36q+2\pi r\theta =1800q
Multiply both sides of the equation by 36q.
72rq+2\pi r\theta =1800q
Multiply 2 and 36 to get 72.
\left(72q+2\pi \theta \right)r=1800q
Combine all terms containing r.
\frac{\left(72q+2\pi \theta \right)r}{72q+2\pi \theta }=\frac{1800q}{72q+2\pi \theta }
Divide both sides by 72q+2\pi \theta .
r=\frac{1800q}{72q+2\pi \theta }
Dividing by 72q+2\pi \theta undoes the multiplication by 72q+2\pi \theta .
r=\frac{900q}{36q+\pi \theta }
Divide 1800q by 72q+2\pi \theta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}