Skip to main content
Solve for q (complex solution)
Tick mark Image
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

2q^{2}+10q+12-q^{2}=0
Subtract q^{2} from both sides.
q^{2}+10q+12=0
Combine 2q^{2} and -q^{2} to get q^{2}.
q=\frac{-10±\sqrt{10^{2}-4\times 12}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-10±\sqrt{100-4\times 12}}{2}
Square 10.
q=\frac{-10±\sqrt{100-48}}{2}
Multiply -4 times 12.
q=\frac{-10±\sqrt{52}}{2}
Add 100 to -48.
q=\frac{-10±2\sqrt{13}}{2}
Take the square root of 52.
q=\frac{2\sqrt{13}-10}{2}
Now solve the equation q=\frac{-10±2\sqrt{13}}{2} when ± is plus. Add -10 to 2\sqrt{13}.
q=\sqrt{13}-5
Divide -10+2\sqrt{13} by 2.
q=\frac{-2\sqrt{13}-10}{2}
Now solve the equation q=\frac{-10±2\sqrt{13}}{2} when ± is minus. Subtract 2\sqrt{13} from -10.
q=-\sqrt{13}-5
Divide -10-2\sqrt{13} by 2.
q=\sqrt{13}-5 q=-\sqrt{13}-5
The equation is now solved.
2q^{2}+10q+12-q^{2}=0
Subtract q^{2} from both sides.
q^{2}+10q+12=0
Combine 2q^{2} and -q^{2} to get q^{2}.
q^{2}+10q=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
q^{2}+10q+5^{2}=-12+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}+10q+25=-12+25
Square 5.
q^{2}+10q+25=13
Add -12 to 25.
\left(q+5\right)^{2}=13
Factor q^{2}+10q+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q+5\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
q+5=\sqrt{13} q+5=-\sqrt{13}
Simplify.
q=\sqrt{13}-5 q=-\sqrt{13}-5
Subtract 5 from both sides of the equation.
2q^{2}+10q+12-q^{2}=0
Subtract q^{2} from both sides.
q^{2}+10q+12=0
Combine 2q^{2} and -q^{2} to get q^{2}.
q=\frac{-10±\sqrt{10^{2}-4\times 12}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-10±\sqrt{100-4\times 12}}{2}
Square 10.
q=\frac{-10±\sqrt{100-48}}{2}
Multiply -4 times 12.
q=\frac{-10±\sqrt{52}}{2}
Add 100 to -48.
q=\frac{-10±2\sqrt{13}}{2}
Take the square root of 52.
q=\frac{2\sqrt{13}-10}{2}
Now solve the equation q=\frac{-10±2\sqrt{13}}{2} when ± is plus. Add -10 to 2\sqrt{13}.
q=\sqrt{13}-5
Divide -10+2\sqrt{13} by 2.
q=\frac{-2\sqrt{13}-10}{2}
Now solve the equation q=\frac{-10±2\sqrt{13}}{2} when ± is minus. Subtract 2\sqrt{13} from -10.
q=-\sqrt{13}-5
Divide -10-2\sqrt{13} by 2.
q=\sqrt{13}-5 q=-\sqrt{13}-5
The equation is now solved.
2q^{2}+10q+12-q^{2}=0
Subtract q^{2} from both sides.
q^{2}+10q+12=0
Combine 2q^{2} and -q^{2} to get q^{2}.
q^{2}+10q=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
q^{2}+10q+5^{2}=-12+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}+10q+25=-12+25
Square 5.
q^{2}+10q+25=13
Add -12 to 25.
\left(q+5\right)^{2}=13
Factor q^{2}+10q+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q+5\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
q+5=\sqrt{13} q+5=-\sqrt{13}
Simplify.
q=\sqrt{13}-5 q=-\sqrt{13}-5
Subtract 5 from both sides of the equation.