Solve for p
p=-\frac{7\left(x-5\right)}{10\left(x+7\right)}
x\neq -7
Solve for x
x=-\frac{35\left(2p-1\right)}{10p+7}
p\neq -\frac{7}{10}
Graph
Share
Copied to clipboard
10p\left(x+7\right)=7\left(5-x\right)
Multiply both sides of the equation by 35, the least common multiple of 7,5.
10px+70p=7\left(5-x\right)
Use the distributive property to multiply 10p by x+7.
10px+70p=35-7x
Use the distributive property to multiply 7 by 5-x.
\left(10x+70\right)p=35-7x
Combine all terms containing p.
\frac{\left(10x+70\right)p}{10x+70}=\frac{35-7x}{10x+70}
Divide both sides by 10x+70.
p=\frac{35-7x}{10x+70}
Dividing by 10x+70 undoes the multiplication by 10x+70.
p=\frac{7\left(5-x\right)}{10\left(x+7\right)}
Divide 35-7x by 10x+70.
10p\left(x+7\right)=7\left(5-x\right)
Multiply both sides of the equation by 35, the least common multiple of 7,5.
10px+70p=7\left(5-x\right)
Use the distributive property to multiply 10p by x+7.
10px+70p=35-7x
Use the distributive property to multiply 7 by 5-x.
10px+70p+7x=35
Add 7x to both sides.
10px+7x=35-70p
Subtract 70p from both sides.
\left(10p+7\right)x=35-70p
Combine all terms containing x.
\frac{\left(10p+7\right)x}{10p+7}=\frac{35-70p}{10p+7}
Divide both sides by 10p+7.
x=\frac{35-70p}{10p+7}
Dividing by 10p+7 undoes the multiplication by 10p+7.
x=\frac{35\left(1-2p\right)}{10p+7}
Divide 35-70p by 10p+7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}