Factor
2\left(p-1\right)\left(p+6\right)p^{3}
Evaluate
2\left(p-1\right)\left(p+6\right)p^{3}
Share
Copied to clipboard
2\left(p^{5}+5p^{4}-6p^{3}\right)
Factor out 2.
p^{3}\left(p^{2}+5p-6\right)
Consider p^{5}+5p^{4}-6p^{3}. Factor out p^{3}.
a+b=5 ab=1\left(-6\right)=-6
Consider p^{2}+5p-6. Factor the expression by grouping. First, the expression needs to be rewritten as p^{2}+ap+bp-6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=-1 b=6
The solution is the pair that gives sum 5.
\left(p^{2}-p\right)+\left(6p-6\right)
Rewrite p^{2}+5p-6 as \left(p^{2}-p\right)+\left(6p-6\right).
p\left(p-1\right)+6\left(p-1\right)
Factor out p in the first and 6 in the second group.
\left(p-1\right)\left(p+6\right)
Factor out common term p-1 by using distributive property.
2p^{3}\left(p-1\right)\left(p+6\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}