Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(p^{2}-5p\right)
Factor out 2.
p\left(p-5\right)
Consider p^{2}-5p. Factor out p.
2p\left(p-5\right)
Rewrite the complete factored expression.
2p^{2}-10p=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-10\right)±10}{2\times 2}
Take the square root of \left(-10\right)^{2}.
p=\frac{10±10}{2\times 2}
The opposite of -10 is 10.
p=\frac{10±10}{4}
Multiply 2 times 2.
p=\frac{20}{4}
Now solve the equation p=\frac{10±10}{4} when ± is plus. Add 10 to 10.
p=5
Divide 20 by 4.
p=\frac{0}{4}
Now solve the equation p=\frac{10±10}{4} when ± is minus. Subtract 10 from 10.
p=0
Divide 0 by 4.
2p^{2}-10p=2\left(p-5\right)p
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and 0 for x_{2}.