Solve for n_12 (complex solution)
\left\{\begin{matrix}n_{12}=-\frac{2\left(n-9\right)}{x}\text{, }&x\neq 0\\n_{12}\in \mathrm{C}\text{, }&n=9\text{ and }x=0\end{matrix}\right.
Solve for n
n=-\frac{n_{12}x}{2}+9
Solve for n_12
\left\{\begin{matrix}n_{12}=-\frac{2\left(n-9\right)}{x}\text{, }&x\neq 0\\n_{12}\in \mathrm{R}\text{, }&n=9\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
2n_{12}x+2\times 2n=36
Combine n and n to get 2n.
2n_{12}x+4n=36
Multiply 2 and 2 to get 4.
2n_{12}x=36-4n
Subtract 4n from both sides.
2xn_{12}=36-4n
The equation is in standard form.
\frac{2xn_{12}}{2x}=\frac{36-4n}{2x}
Divide both sides by 2x.
n_{12}=\frac{36-4n}{2x}
Dividing by 2x undoes the multiplication by 2x.
n_{12}=\frac{2\left(9-n\right)}{x}
Divide 36-4n by 2x.
2n_{12}x+2\times 2n=36
Combine n and n to get 2n.
2n_{12}x+4n=36
Multiply 2 and 2 to get 4.
4n=36-2n_{12}x
Subtract 2n_{12}x from both sides.
\frac{4n}{4}=\frac{36-2n_{12}x}{4}
Divide both sides by 4.
n=\frac{36-2n_{12}x}{4}
Dividing by 4 undoes the multiplication by 4.
n=-\frac{n_{12}x}{2}+9
Divide 36-2n_{12}x by 4.
2n_{12}x+2\times 2n=36
Combine n and n to get 2n.
2n_{12}x+4n=36
Multiply 2 and 2 to get 4.
2n_{12}x=36-4n
Subtract 4n from both sides.
2xn_{12}=36-4n
The equation is in standard form.
\frac{2xn_{12}}{2x}=\frac{36-4n}{2x}
Divide both sides by 2x.
n_{12}=\frac{36-4n}{2x}
Dividing by 2x undoes the multiplication by 2x.
n_{12}=\frac{2\left(9-n\right)}{x}
Divide 36-4n by 2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}