Solve for n
n=\frac{7\left(x+2\right)}{2}
Solve for x
x=\frac{2\left(n-7\right)}{7}
Graph
Share
Copied to clipboard
2n-2x-8=5x+6
Use the distributive property to multiply -2 by x+4.
2n-8=5x+6+2x
Add 2x to both sides.
2n-8=7x+6
Combine 5x and 2x to get 7x.
2n=7x+6+8
Add 8 to both sides.
2n=7x+14
Add 6 and 8 to get 14.
\frac{2n}{2}=\frac{7x+14}{2}
Divide both sides by 2.
n=\frac{7x+14}{2}
Dividing by 2 undoes the multiplication by 2.
n=\frac{7x}{2}+7
Divide 14+7x by 2.
2n-2x-8=5x+6
Use the distributive property to multiply -2 by x+4.
2n-2x-8-5x=6
Subtract 5x from both sides.
2n-7x-8=6
Combine -2x and -5x to get -7x.
-7x-8=6-2n
Subtract 2n from both sides.
-7x=6-2n+8
Add 8 to both sides.
-7x=14-2n
Add 6 and 8 to get 14.
\frac{-7x}{-7}=\frac{14-2n}{-7}
Divide both sides by -7.
x=\frac{14-2n}{-7}
Dividing by -7 undoes the multiplication by -7.
x=\frac{2n}{7}-2
Divide 14-2n by -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}