Solve for n
n=\frac{\pi }{4}+\frac{5\sqrt{3}}{2}-\frac{5}{8}\approx 4.490525182
Share
Copied to clipboard
2n-\frac{3}{4}+\frac{8}{4}-5\sqrt{3}=\frac{1}{2}\pi
Convert 2 to fraction \frac{8}{4}.
2n+\frac{-3+8}{4}-5\sqrt{3}=\frac{1}{2}\pi
Since -\frac{3}{4} and \frac{8}{4} have the same denominator, add them by adding their numerators.
2n+\frac{5}{4}-5\sqrt{3}=\frac{1}{2}\pi
Add -3 and 8 to get 5.
2n-5\sqrt{3}=\frac{1}{2}\pi -\frac{5}{4}
Subtract \frac{5}{4} from both sides.
2n=\frac{1}{2}\pi -\frac{5}{4}+5\sqrt{3}
Add 5\sqrt{3} to both sides.
2n=\frac{\pi }{2}+5\sqrt{3}-\frac{5}{4}
The equation is in standard form.
\frac{2n}{2}=\frac{\frac{\pi }{2}+5\sqrt{3}-\frac{5}{4}}{2}
Divide both sides by 2.
n=\frac{\frac{\pi }{2}+5\sqrt{3}-\frac{5}{4}}{2}
Dividing by 2 undoes the multiplication by 2.
n=\frac{\pi }{4}+\frac{5\sqrt{3}}{2}-\frac{5}{8}
Divide \frac{\pi }{2}-\frac{5}{4}+5\sqrt{3} by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}