Factor
2n\left(n-5\right)\left(n-4\right)
Evaluate
2n\left(n-5\right)\left(n-4\right)
Share
Copied to clipboard
2\left(n^{3}-9n^{2}+20n\right)
Factor out 2.
n\left(n^{2}-9n+20\right)
Consider n^{3}-9n^{2}+20n. Factor out n.
a+b=-9 ab=1\times 20=20
Consider n^{2}-9n+20. Factor the expression by grouping. First, the expression needs to be rewritten as n^{2}+an+bn+20. To find a and b, set up a system to be solved.
-1,-20 -2,-10 -4,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 20.
-1-20=-21 -2-10=-12 -4-5=-9
Calculate the sum for each pair.
a=-5 b=-4
The solution is the pair that gives sum -9.
\left(n^{2}-5n\right)+\left(-4n+20\right)
Rewrite n^{2}-9n+20 as \left(n^{2}-5n\right)+\left(-4n+20\right).
n\left(n-5\right)-4\left(n-5\right)
Factor out n in the first and -4 in the second group.
\left(n-5\right)\left(n-4\right)
Factor out common term n-5 by using distributive property.
2n\left(n-5\right)\left(n-4\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}