Solve for n
n = \frac{\sqrt{105} + 5}{4} \approx 3.811737691
n=\frac{5-\sqrt{105}}{4}\approx -1.311737691
Share
Copied to clipboard
2n^{2}-5n-4=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2n^{2}-5n-4-6=6-6
Subtract 6 from both sides of the equation.
2n^{2}-5n-4-6=0
Subtracting 6 from itself leaves 0.
2n^{2}-5n-10=0
Subtract 6 from -4.
n=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-10\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -5 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-10\right)}}{2\times 2}
Square -5.
n=\frac{-\left(-5\right)±\sqrt{25-8\left(-10\right)}}{2\times 2}
Multiply -4 times 2.
n=\frac{-\left(-5\right)±\sqrt{25+80}}{2\times 2}
Multiply -8 times -10.
n=\frac{-\left(-5\right)±\sqrt{105}}{2\times 2}
Add 25 to 80.
n=\frac{5±\sqrt{105}}{2\times 2}
The opposite of -5 is 5.
n=\frac{5±\sqrt{105}}{4}
Multiply 2 times 2.
n=\frac{\sqrt{105}+5}{4}
Now solve the equation n=\frac{5±\sqrt{105}}{4} when ± is plus. Add 5 to \sqrt{105}.
n=\frac{5-\sqrt{105}}{4}
Now solve the equation n=\frac{5±\sqrt{105}}{4} when ± is minus. Subtract \sqrt{105} from 5.
n=\frac{\sqrt{105}+5}{4} n=\frac{5-\sqrt{105}}{4}
The equation is now solved.
2n^{2}-5n-4=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2n^{2}-5n-4-\left(-4\right)=6-\left(-4\right)
Add 4 to both sides of the equation.
2n^{2}-5n=6-\left(-4\right)
Subtracting -4 from itself leaves 0.
2n^{2}-5n=10
Subtract -4 from 6.
\frac{2n^{2}-5n}{2}=\frac{10}{2}
Divide both sides by 2.
n^{2}-\frac{5}{2}n=\frac{10}{2}
Dividing by 2 undoes the multiplication by 2.
n^{2}-\frac{5}{2}n=5
Divide 10 by 2.
n^{2}-\frac{5}{2}n+\left(-\frac{5}{4}\right)^{2}=5+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{5}{2}n+\frac{25}{16}=5+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{5}{2}n+\frac{25}{16}=\frac{105}{16}
Add 5 to \frac{25}{16}.
\left(n-\frac{5}{4}\right)^{2}=\frac{105}{16}
Factor n^{2}-\frac{5}{2}n+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{5}{4}\right)^{2}}=\sqrt{\frac{105}{16}}
Take the square root of both sides of the equation.
n-\frac{5}{4}=\frac{\sqrt{105}}{4} n-\frac{5}{4}=-\frac{\sqrt{105}}{4}
Simplify.
n=\frac{\sqrt{105}+5}{4} n=\frac{5-\sqrt{105}}{4}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}