Solve for n_2
\left\{\begin{matrix}\\n_{2}=4n\text{, }&\text{unconditionally}\\n_{2}\in \mathrm{R}\text{, }&n=0\end{matrix}\right.
Solve for n
n=\frac{n_{2}}{4}
n=0
Share
Copied to clipboard
\frac{1}{2}n_{2}n=2n^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{n}{2}n_{2}=2n^{2}
The equation is in standard form.
\frac{2\times \frac{n}{2}n_{2}}{n}=\frac{2\times 2n^{2}}{n}
Divide both sides by \frac{1}{2}n.
n_{2}=\frac{2\times 2n^{2}}{n}
Dividing by \frac{1}{2}n undoes the multiplication by \frac{1}{2}n.
n_{2}=4n
Divide 2n^{2} by \frac{1}{2}n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}