Solve for a
a=-\frac{2n}{5}+\frac{24}{5n}
n\neq 0
Solve for n
n=\frac{\sqrt{25a^{2}+192}-5a}{4}
n=\frac{-\sqrt{25a^{2}+192}-5a}{4}
Share
Copied to clipboard
5an-24=-2n^{2}
Subtract 2n^{2} from both sides. Anything subtracted from zero gives its negation.
5an=-2n^{2}+24
Add 24 to both sides.
5na=24-2n^{2}
The equation is in standard form.
\frac{5na}{5n}=\frac{24-2n^{2}}{5n}
Divide both sides by 5n.
a=\frac{24-2n^{2}}{5n}
Dividing by 5n undoes the multiplication by 5n.
a=-\frac{2n}{5}+\frac{24}{5n}
Divide -2n^{2}+24 by 5n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}