Evaluate
32n^{4}
Differentiate w.r.t. n
128n^{3}
Share
Copied to clipboard
2\times 1\times \left(4n^{2}\right)^{2}
Calculate n to the power of 0 and get 1.
2\times \left(4n^{2}\right)^{2}
Multiply 2 and 1 to get 2.
2\times 4^{2}\left(n^{2}\right)^{2}
Expand \left(4n^{2}\right)^{2}.
2\times 4^{2}n^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2\times 16n^{4}
Calculate 4 to the power of 2 and get 16.
32n^{4}
Multiply 2 and 16 to get 32.
\frac{\mathrm{d}}{\mathrm{d}n}(2\times 1\times \left(4n^{2}\right)^{2})
Calculate n to the power of 0 and get 1.
\frac{\mathrm{d}}{\mathrm{d}n}(2\times \left(4n^{2}\right)^{2})
Multiply 2 and 1 to get 2.
\frac{\mathrm{d}}{\mathrm{d}n}(2\times 4^{2}\left(n^{2}\right)^{2})
Expand \left(4n^{2}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}n}(2\times 4^{2}n^{4})
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}n}(2\times 16n^{4})
Calculate 4 to the power of 2 and get 16.
\frac{\mathrm{d}}{\mathrm{d}n}(32n^{4})
Multiply 2 and 16 to get 32.
4\times 32n^{4-1}
The derivative of ax^{n} is nax^{n-1}.
128n^{4-1}
Multiply 4 times 32.
128n^{3}
Subtract 1 from 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}