Solve for n
n=\frac{\sqrt{2}}{2}+1\approx 1.707106781
n=-\frac{\sqrt{2}}{2}+1\approx 0.292893219
Share
Copied to clipboard
2nn+1=4n
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
2n^{2}+1=4n
Multiply n and n to get n^{2}.
2n^{2}+1-4n=0
Subtract 4n from both sides.
2n^{2}-4n+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-4\right)±\sqrt{16-4\times 2}}{2\times 2}
Square -4.
n=\frac{-\left(-4\right)±\sqrt{16-8}}{2\times 2}
Multiply -4 times 2.
n=\frac{-\left(-4\right)±\sqrt{8}}{2\times 2}
Add 16 to -8.
n=\frac{-\left(-4\right)±2\sqrt{2}}{2\times 2}
Take the square root of 8.
n=\frac{4±2\sqrt{2}}{2\times 2}
The opposite of -4 is 4.
n=\frac{4±2\sqrt{2}}{4}
Multiply 2 times 2.
n=\frac{2\sqrt{2}+4}{4}
Now solve the equation n=\frac{4±2\sqrt{2}}{4} when ± is plus. Add 4 to 2\sqrt{2}.
n=\frac{\sqrt{2}}{2}+1
Divide 4+2\sqrt{2} by 4.
n=\frac{4-2\sqrt{2}}{4}
Now solve the equation n=\frac{4±2\sqrt{2}}{4} when ± is minus. Subtract 2\sqrt{2} from 4.
n=-\frac{\sqrt{2}}{2}+1
Divide 4-2\sqrt{2} by 4.
n=\frac{\sqrt{2}}{2}+1 n=-\frac{\sqrt{2}}{2}+1
The equation is now solved.
2nn+1=4n
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
2n^{2}+1=4n
Multiply n and n to get n^{2}.
2n^{2}+1-4n=0
Subtract 4n from both sides.
2n^{2}-4n=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{2n^{2}-4n}{2}=-\frac{1}{2}
Divide both sides by 2.
n^{2}+\left(-\frac{4}{2}\right)n=-\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
n^{2}-2n=-\frac{1}{2}
Divide -4 by 2.
n^{2}-2n+1=-\frac{1}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-2n+1=\frac{1}{2}
Add -\frac{1}{2} to 1.
\left(n-1\right)^{2}=\frac{1}{2}
Factor n^{2}-2n+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-1\right)^{2}}=\sqrt{\frac{1}{2}}
Take the square root of both sides of the equation.
n-1=\frac{\sqrt{2}}{2} n-1=-\frac{\sqrt{2}}{2}
Simplify.
n=\frac{\sqrt{2}}{2}+1 n=-\frac{\sqrt{2}}{2}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}