Evaluate
392+44m-14m^{2}
Factor
-14\left(m-\frac{11-\sqrt{1493}}{7}\right)\left(m-\frac{\sqrt{1493}+11}{7}\right)
Share
Copied to clipboard
2m-14\left(m^{2}-3m-28\right)
Divide 14 by \frac{1}{m^{2}-3m-28} by multiplying 14 by the reciprocal of \frac{1}{m^{2}-3m-28}.
2m-\left(14m^{2}-42m-392\right)
Use the distributive property to multiply 14 by m^{2}-3m-28.
2m-14m^{2}+42m+392
To find the opposite of 14m^{2}-42m-392, find the opposite of each term.
44m-14m^{2}+392
Combine 2m and 42m to get 44m.
factor(2m-14\left(m^{2}-3m-28\right))
Divide 14 by \frac{1}{m^{2}-3m-28} by multiplying 14 by the reciprocal of \frac{1}{m^{2}-3m-28}.
factor(2m-\left(14m^{2}-42m-392\right))
Use the distributive property to multiply 14 by m^{2}-3m-28.
factor(2m-14m^{2}+42m+392)
To find the opposite of 14m^{2}-42m-392, find the opposite of each term.
factor(44m-14m^{2}+392)
Combine 2m and 42m to get 44m.
-14m^{2}+44m+392=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-44±\sqrt{44^{2}-4\left(-14\right)\times 392}}{2\left(-14\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-44±\sqrt{1936-4\left(-14\right)\times 392}}{2\left(-14\right)}
Square 44.
m=\frac{-44±\sqrt{1936+56\times 392}}{2\left(-14\right)}
Multiply -4 times -14.
m=\frac{-44±\sqrt{1936+21952}}{2\left(-14\right)}
Multiply 56 times 392.
m=\frac{-44±\sqrt{23888}}{2\left(-14\right)}
Add 1936 to 21952.
m=\frac{-44±4\sqrt{1493}}{2\left(-14\right)}
Take the square root of 23888.
m=\frac{-44±4\sqrt{1493}}{-28}
Multiply 2 times -14.
m=\frac{4\sqrt{1493}-44}{-28}
Now solve the equation m=\frac{-44±4\sqrt{1493}}{-28} when ± is plus. Add -44 to 4\sqrt{1493}.
m=\frac{11-\sqrt{1493}}{7}
Divide -44+4\sqrt{1493} by -28.
m=\frac{-4\sqrt{1493}-44}{-28}
Now solve the equation m=\frac{-44±4\sqrt{1493}}{-28} when ± is minus. Subtract 4\sqrt{1493} from -44.
m=\frac{\sqrt{1493}+11}{7}
Divide -44-4\sqrt{1493} by -28.
-14m^{2}+44m+392=-14\left(m-\frac{11-\sqrt{1493}}{7}\right)\left(m-\frac{\sqrt{1493}+11}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11-\sqrt{1493}}{7} for x_{1} and \frac{11+\sqrt{1493}}{7} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}