Evaluate
3\left(m-5\right)\left(m-2\right)
Expand
3m^{2}-21m+30
Share
Copied to clipboard
2m^{2}-10m-\left(5-m\right)\left(m-6\right)
Use the distributive property to multiply 2m by m-5.
2m^{2}-10m-\left(5m-30-m^{2}+6m\right)
Apply the distributive property by multiplying each term of 5-m by each term of m-6.
2m^{2}-10m-\left(11m-30-m^{2}\right)
Combine 5m and 6m to get 11m.
2m^{2}-10m-11m-\left(-30\right)-\left(-m^{2}\right)
To find the opposite of 11m-30-m^{2}, find the opposite of each term.
2m^{2}-10m-11m+30-\left(-m^{2}\right)
The opposite of -30 is 30.
2m^{2}-10m-11m+30+m^{2}
The opposite of -m^{2} is m^{2}.
2m^{2}-21m+30+m^{2}
Combine -10m and -11m to get -21m.
3m^{2}-21m+30
Combine 2m^{2} and m^{2} to get 3m^{2}.
2m^{2}-10m-\left(5-m\right)\left(m-6\right)
Use the distributive property to multiply 2m by m-5.
2m^{2}-10m-\left(5m-30-m^{2}+6m\right)
Apply the distributive property by multiplying each term of 5-m by each term of m-6.
2m^{2}-10m-\left(11m-30-m^{2}\right)
Combine 5m and 6m to get 11m.
2m^{2}-10m-11m-\left(-30\right)-\left(-m^{2}\right)
To find the opposite of 11m-30-m^{2}, find the opposite of each term.
2m^{2}-10m-11m+30-\left(-m^{2}\right)
The opposite of -30 is 30.
2m^{2}-10m-11m+30+m^{2}
The opposite of -m^{2} is m^{2}.
2m^{2}-21m+30+m^{2}
Combine -10m and -11m to get -21m.
3m^{2}-21m+30
Combine 2m^{2} and m^{2} to get 3m^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}