Solve for m
m=-\frac{5}{3\left(x-2\right)}
x\neq 2
Solve for x
x=2-\frac{5}{3m}
m\neq 0
Graph
Share
Copied to clipboard
4mx-2m+5=m\left(x+4\right)
Use the distributive property to multiply 2m by 2x-1.
4mx-2m+5=mx+4m
Use the distributive property to multiply m by x+4.
4mx-2m+5-mx=4m
Subtract mx from both sides.
3mx-2m+5=4m
Combine 4mx and -mx to get 3mx.
3mx-2m+5-4m=0
Subtract 4m from both sides.
3mx-6m+5=0
Combine -2m and -4m to get -6m.
3mx-6m=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\left(3x-6\right)m=-5
Combine all terms containing m.
\frac{\left(3x-6\right)m}{3x-6}=-\frac{5}{3x-6}
Divide both sides by 3x-6.
m=-\frac{5}{3x-6}
Dividing by 3x-6 undoes the multiplication by 3x-6.
m=-\frac{5}{3\left(x-2\right)}
Divide -5 by 3x-6.
4xm-2m+5=m\left(x+4\right)
Use the distributive property to multiply 2m by 2x-1.
4xm-2m+5=mx+4m
Use the distributive property to multiply m by x+4.
4xm-2m+5-mx=4m
Subtract mx from both sides.
3xm-2m+5=4m
Combine 4xm and -mx to get 3xm.
3xm+5=4m+2m
Add 2m to both sides.
3xm+5=6m
Combine 4m and 2m to get 6m.
3xm=6m-5
Subtract 5 from both sides.
3mx=6m-5
The equation is in standard form.
\frac{3mx}{3m}=\frac{6m-5}{3m}
Divide both sides by 3m.
x=\frac{6m-5}{3m}
Dividing by 3m undoes the multiplication by 3m.
x=2-\frac{5}{3m}
Divide 6m-5 by 3m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}