Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2m^{2}-12m+11=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 11}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 11}}{2\times 2}
Square -12.
m=\frac{-\left(-12\right)±\sqrt{144-8\times 11}}{2\times 2}
Multiply -4 times 2.
m=\frac{-\left(-12\right)±\sqrt{144-88}}{2\times 2}
Multiply -8 times 11.
m=\frac{-\left(-12\right)±\sqrt{56}}{2\times 2}
Add 144 to -88.
m=\frac{-\left(-12\right)±2\sqrt{14}}{2\times 2}
Take the square root of 56.
m=\frac{12±2\sqrt{14}}{2\times 2}
The opposite of -12 is 12.
m=\frac{12±2\sqrt{14}}{4}
Multiply 2 times 2.
m=\frac{2\sqrt{14}+12}{4}
Now solve the equation m=\frac{12±2\sqrt{14}}{4} when ± is plus. Add 12 to 2\sqrt{14}.
m=\frac{\sqrt{14}}{2}+3
Divide 12+2\sqrt{14} by 4.
m=\frac{12-2\sqrt{14}}{4}
Now solve the equation m=\frac{12±2\sqrt{14}}{4} when ± is minus. Subtract 2\sqrt{14} from 12.
m=-\frac{\sqrt{14}}{2}+3
Divide 12-2\sqrt{14} by 4.
2m^{2}-12m+11=2\left(m-\left(\frac{\sqrt{14}}{2}+3\right)\right)\left(m-\left(-\frac{\sqrt{14}}{2}+3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3+\frac{\sqrt{14}}{2} for x_{1} and 3-\frac{\sqrt{14}}{2} for x_{2}.
x ^ 2 -6x +\frac{11}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 2
r + s = 6 rs = \frac{11}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 3 - u s = 3 + u
Two numbers r and s sum up to 6 exactly when the average of the two numbers is \frac{1}{2}*6 = 3. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(3 - u) (3 + u) = \frac{11}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{11}{2}
9 - u^2 = \frac{11}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{11}{2}-9 = -\frac{7}{2}
Simplify the expression by subtracting 9 on both sides
u^2 = \frac{7}{2} u = \pm\sqrt{\frac{7}{2}} = \pm \frac{\sqrt{7}}{\sqrt{2}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =3 - \frac{\sqrt{7}}{\sqrt{2}} = 1.129 s = 3 + \frac{\sqrt{7}}{\sqrt{2}} = 4.871
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.