Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

2m^{2}+4m+\frac{41}{4}=20
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2m^{2}+4m+\frac{41}{4}-20=20-20
Subtract 20 from both sides of the equation.
2m^{2}+4m+\frac{41}{4}-20=0
Subtracting 20 from itself leaves 0.
2m^{2}+4m-\frac{39}{4}=0
Subtract 20 from \frac{41}{4}.
m=\frac{-4±\sqrt{4^{2}-4\times 2\left(-\frac{39}{4}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and -\frac{39}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-4±\sqrt{16-4\times 2\left(-\frac{39}{4}\right)}}{2\times 2}
Square 4.
m=\frac{-4±\sqrt{16-8\left(-\frac{39}{4}\right)}}{2\times 2}
Multiply -4 times 2.
m=\frac{-4±\sqrt{16+78}}{2\times 2}
Multiply -8 times -\frac{39}{4}.
m=\frac{-4±\sqrt{94}}{2\times 2}
Add 16 to 78.
m=\frac{-4±\sqrt{94}}{4}
Multiply 2 times 2.
m=\frac{\sqrt{94}-4}{4}
Now solve the equation m=\frac{-4±\sqrt{94}}{4} when ± is plus. Add -4 to \sqrt{94}.
m=\frac{\sqrt{94}}{4}-1
Divide -4+\sqrt{94} by 4.
m=\frac{-\sqrt{94}-4}{4}
Now solve the equation m=\frac{-4±\sqrt{94}}{4} when ± is minus. Subtract \sqrt{94} from -4.
m=-\frac{\sqrt{94}}{4}-1
Divide -4-\sqrt{94} by 4.
m=\frac{\sqrt{94}}{4}-1 m=-\frac{\sqrt{94}}{4}-1
The equation is now solved.
2m^{2}+4m+\frac{41}{4}=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2m^{2}+4m+\frac{41}{4}-\frac{41}{4}=20-\frac{41}{4}
Subtract \frac{41}{4} from both sides of the equation.
2m^{2}+4m=20-\frac{41}{4}
Subtracting \frac{41}{4} from itself leaves 0.
2m^{2}+4m=\frac{39}{4}
Subtract \frac{41}{4} from 20.
\frac{2m^{2}+4m}{2}=\frac{\frac{39}{4}}{2}
Divide both sides by 2.
m^{2}+\frac{4}{2}m=\frac{\frac{39}{4}}{2}
Dividing by 2 undoes the multiplication by 2.
m^{2}+2m=\frac{\frac{39}{4}}{2}
Divide 4 by 2.
m^{2}+2m=\frac{39}{8}
Divide \frac{39}{4} by 2.
m^{2}+2m+1^{2}=\frac{39}{8}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+2m+1=\frac{39}{8}+1
Square 1.
m^{2}+2m+1=\frac{47}{8}
Add \frac{39}{8} to 1.
\left(m+1\right)^{2}=\frac{47}{8}
Factor m^{2}+2m+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+1\right)^{2}}=\sqrt{\frac{47}{8}}
Take the square root of both sides of the equation.
m+1=\frac{\sqrt{94}}{4} m+1=-\frac{\sqrt{94}}{4}
Simplify.
m=\frac{\sqrt{94}}{4}-1 m=-\frac{\sqrt{94}}{4}-1
Subtract 1 from both sides of the equation.