Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

2m^{2}+4+3m=0
Add 3m to both sides.
2m^{2}+3m+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-3±\sqrt{3^{2}-4\times 2\times 4}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-3±\sqrt{9-4\times 2\times 4}}{2\times 2}
Square 3.
m=\frac{-3±\sqrt{9-8\times 4}}{2\times 2}
Multiply -4 times 2.
m=\frac{-3±\sqrt{9-32}}{2\times 2}
Multiply -8 times 4.
m=\frac{-3±\sqrt{-23}}{2\times 2}
Add 9 to -32.
m=\frac{-3±\sqrt{23}i}{2\times 2}
Take the square root of -23.
m=\frac{-3±\sqrt{23}i}{4}
Multiply 2 times 2.
m=\frac{-3+\sqrt{23}i}{4}
Now solve the equation m=\frac{-3±\sqrt{23}i}{4} when ± is plus. Add -3 to i\sqrt{23}.
m=\frac{-\sqrt{23}i-3}{4}
Now solve the equation m=\frac{-3±\sqrt{23}i}{4} when ± is minus. Subtract i\sqrt{23} from -3.
m=\frac{-3+\sqrt{23}i}{4} m=\frac{-\sqrt{23}i-3}{4}
The equation is now solved.
2m^{2}+4+3m=0
Add 3m to both sides.
2m^{2}+3m=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{2m^{2}+3m}{2}=-\frac{4}{2}
Divide both sides by 2.
m^{2}+\frac{3}{2}m=-\frac{4}{2}
Dividing by 2 undoes the multiplication by 2.
m^{2}+\frac{3}{2}m=-2
Divide -4 by 2.
m^{2}+\frac{3}{2}m+\left(\frac{3}{4}\right)^{2}=-2+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{3}{2}m+\frac{9}{16}=-2+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{3}{2}m+\frac{9}{16}=-\frac{23}{16}
Add -2 to \frac{9}{16}.
\left(m+\frac{3}{4}\right)^{2}=-\frac{23}{16}
Factor m^{2}+\frac{3}{2}m+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{3}{4}\right)^{2}}=\sqrt{-\frac{23}{16}}
Take the square root of both sides of the equation.
m+\frac{3}{4}=\frac{\sqrt{23}i}{4} m+\frac{3}{4}=-\frac{\sqrt{23}i}{4}
Simplify.
m=\frac{-3+\sqrt{23}i}{4} m=\frac{-\sqrt{23}i-3}{4}
Subtract \frac{3}{4} from both sides of the equation.