Solve for m
m=\frac{1}{3}-2x
Solve for x
x=-\frac{m}{2}+\frac{1}{6}
Graph
Share
Copied to clipboard
4m+10x=m+1+4x
Multiply both sides of the equation by 2.
4m+10x-m=1+4x
Subtract m from both sides.
3m+10x=1+4x
Combine 4m and -m to get 3m.
3m=1+4x-10x
Subtract 10x from both sides.
3m=1-6x
Combine 4x and -10x to get -6x.
\frac{3m}{3}=\frac{1-6x}{3}
Divide both sides by 3.
m=\frac{1-6x}{3}
Dividing by 3 undoes the multiplication by 3.
m=\frac{1}{3}-2x
Divide 1-6x by 3.
4m+10x=m+1+4x
Multiply both sides of the equation by 2.
4m+10x-4x=m+1
Subtract 4x from both sides.
4m+6x=m+1
Combine 10x and -4x to get 6x.
6x=m+1-4m
Subtract 4m from both sides.
6x=-3m+1
Combine m and -4m to get -3m.
6x=1-3m
The equation is in standard form.
\frac{6x}{6}=\frac{1-3m}{6}
Divide both sides by 6.
x=\frac{1-3m}{6}
Dividing by 6 undoes the multiplication by 6.
x=-\frac{m}{2}+\frac{1}{6}
Divide -3m+1 by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}