Solve for k
k\geq \frac{7}{2}
Share
Copied to clipboard
2k-k-\left(-3\right)+4\leq 3k
To find the opposite of k-3, find the opposite of each term.
2k-k+3+4\leq 3k
The opposite of -3 is 3.
k+3+4\leq 3k
Combine 2k and -k to get k.
k+7\leq 3k
Add 3 and 4 to get 7.
k+7-3k\leq 0
Subtract 3k from both sides.
-2k+7\leq 0
Combine k and -3k to get -2k.
-2k\leq -7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
k\geq \frac{-7}{-2}
Divide both sides by -2. Since -2 is negative, the inequality direction is changed.
k\geq \frac{7}{2}
Fraction \frac{-7}{-2} can be simplified to \frac{7}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}