Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

2k^{4}-\left(\left(k^{3}\right)^{2}-2k^{3}+1\right)+4\left(k+4-2k^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k^{3}-1\right)^{2}.
2k^{4}-\left(k^{6}-2k^{3}+1\right)+4\left(k+4-2k^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
2k^{4}-k^{6}+2k^{3}-1+4\left(k+4-2k^{2}\right)^{2}
To find the opposite of k^{6}-2k^{3}+1, find the opposite of each term.
2k^{4}-k^{6}+2k^{3}-1+4\left(4k^{4}-4k^{3}-15k^{2}+8k+16\right)
Square k+4-2k^{2}.
2k^{4}-k^{6}+2k^{3}-1+16k^{4}-16k^{3}-60k^{2}+32k+64
Use the distributive property to multiply 4 by 4k^{4}-4k^{3}-15k^{2}+8k+16.
18k^{4}-k^{6}+2k^{3}-1-16k^{3}-60k^{2}+32k+64
Combine 2k^{4} and 16k^{4} to get 18k^{4}.
18k^{4}-k^{6}-14k^{3}-1-60k^{2}+32k+64
Combine 2k^{3} and -16k^{3} to get -14k^{3}.
18k^{4}-k^{6}-14k^{3}+63-60k^{2}+32k
Add -1 and 64 to get 63.
2k^{4}-\left(\left(k^{3}\right)^{2}-2k^{3}+1\right)+4\left(k+4-2k^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k^{3}-1\right)^{2}.
2k^{4}-\left(k^{6}-2k^{3}+1\right)+4\left(k+4-2k^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
2k^{4}-k^{6}+2k^{3}-1+4\left(k+4-2k^{2}\right)^{2}
To find the opposite of k^{6}-2k^{3}+1, find the opposite of each term.
2k^{4}-k^{6}+2k^{3}-1+4\left(4k^{4}-4k^{3}-15k^{2}+8k+16\right)
Square k+4-2k^{2}.
2k^{4}-k^{6}+2k^{3}-1+16k^{4}-16k^{3}-60k^{2}+32k+64
Use the distributive property to multiply 4 by 4k^{4}-4k^{3}-15k^{2}+8k+16.
18k^{4}-k^{6}+2k^{3}-1-16k^{3}-60k^{2}+32k+64
Combine 2k^{4} and 16k^{4} to get 18k^{4}.
18k^{4}-k^{6}-14k^{3}-1-60k^{2}+32k+64
Combine 2k^{3} and -16k^{3} to get -14k^{3}.
18k^{4}-k^{6}-14k^{3}+63-60k^{2}+32k
Add -1 and 64 to get 63.