Skip to main content
Solve for k (complex solution)
Tick mark Image
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

2t^{2}+14t-1=0
Substitute t for k^{2}.
t=\frac{-14±\sqrt{14^{2}-4\times 2\left(-1\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 14 for b, and -1 for c in the quadratic formula.
t=\frac{-14±2\sqrt{51}}{4}
Do the calculations.
t=\frac{\sqrt{51}-7}{2} t=\frac{-\sqrt{51}-7}{2}
Solve the equation t=\frac{-14±2\sqrt{51}}{4} when ± is plus and when ± is minus.
k=-\sqrt{\frac{\sqrt{51}-7}{2}} k=\sqrt{\frac{\sqrt{51}-7}{2}} k=-i\sqrt{\frac{\sqrt{51}+7}{2}} k=i\sqrt{\frac{\sqrt{51}+7}{2}}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for each t.
2t^{2}+14t-1=0
Substitute t for k^{2}.
t=\frac{-14±\sqrt{14^{2}-4\times 2\left(-1\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 14 for b, and -1 for c in the quadratic formula.
t=\frac{-14±2\sqrt{51}}{4}
Do the calculations.
t=\frac{\sqrt{51}-7}{2} t=\frac{-\sqrt{51}-7}{2}
Solve the equation t=\frac{-14±2\sqrt{51}}{4} when ± is plus and when ± is minus.
k=\frac{\sqrt{2\sqrt{51}-14}}{2} k=-\frac{\sqrt{2\sqrt{51}-14}}{2}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.