Solve for k
k=\frac{7+\sqrt{31}i}{4}\approx 1.75+1.391941091i
k=\frac{-\sqrt{31}i+7}{4}\approx 1.75-1.391941091i
Share
Copied to clipboard
2k^{2}-7k=-10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2k^{2}-7k-\left(-10\right)=-10-\left(-10\right)
Add 10 to both sides of the equation.
2k^{2}-7k-\left(-10\right)=0
Subtracting -10 from itself leaves 0.
2k^{2}-7k+10=0
Subtract -10 from 0.
k=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 10}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -7 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 10}}{2\times 2}
Square -7.
k=\frac{-\left(-7\right)±\sqrt{49-8\times 10}}{2\times 2}
Multiply -4 times 2.
k=\frac{-\left(-7\right)±\sqrt{49-80}}{2\times 2}
Multiply -8 times 10.
k=\frac{-\left(-7\right)±\sqrt{-31}}{2\times 2}
Add 49 to -80.
k=\frac{-\left(-7\right)±\sqrt{31}i}{2\times 2}
Take the square root of -31.
k=\frac{7±\sqrt{31}i}{2\times 2}
The opposite of -7 is 7.
k=\frac{7±\sqrt{31}i}{4}
Multiply 2 times 2.
k=\frac{7+\sqrt{31}i}{4}
Now solve the equation k=\frac{7±\sqrt{31}i}{4} when ± is plus. Add 7 to i\sqrt{31}.
k=\frac{-\sqrt{31}i+7}{4}
Now solve the equation k=\frac{7±\sqrt{31}i}{4} when ± is minus. Subtract i\sqrt{31} from 7.
k=\frac{7+\sqrt{31}i}{4} k=\frac{-\sqrt{31}i+7}{4}
The equation is now solved.
2k^{2}-7k=-10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2k^{2}-7k}{2}=-\frac{10}{2}
Divide both sides by 2.
k^{2}-\frac{7}{2}k=-\frac{10}{2}
Dividing by 2 undoes the multiplication by 2.
k^{2}-\frac{7}{2}k=-5
Divide -10 by 2.
k^{2}-\frac{7}{2}k+\left(-\frac{7}{4}\right)^{2}=-5+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-\frac{7}{2}k+\frac{49}{16}=-5+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
k^{2}-\frac{7}{2}k+\frac{49}{16}=-\frac{31}{16}
Add -5 to \frac{49}{16}.
\left(k-\frac{7}{4}\right)^{2}=-\frac{31}{16}
Factor k^{2}-\frac{7}{2}k+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{7}{4}\right)^{2}}=\sqrt{-\frac{31}{16}}
Take the square root of both sides of the equation.
k-\frac{7}{4}=\frac{\sqrt{31}i}{4} k-\frac{7}{4}=-\frac{\sqrt{31}i}{4}
Simplify.
k=\frac{7+\sqrt{31}i}{4} k=\frac{-\sqrt{31}i+7}{4}
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}