Solve for k (complex solution)
k=\sqrt{17}-3\approx 1.123105626
k=-\left(\sqrt{17}+3\right)\approx -7.123105626
Solve for k
k=\sqrt{17}-3\approx 1.123105626
k=-\sqrt{17}-3\approx -7.123105626
Share
Copied to clipboard
2k^{2}-16+12k=0
Use the distributive property to multiply -4 by 4-3k.
2k^{2}+12k-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-12±\sqrt{12^{2}-4\times 2\left(-16\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 12 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-12±\sqrt{144-4\times 2\left(-16\right)}}{2\times 2}
Square 12.
k=\frac{-12±\sqrt{144-8\left(-16\right)}}{2\times 2}
Multiply -4 times 2.
k=\frac{-12±\sqrt{144+128}}{2\times 2}
Multiply -8 times -16.
k=\frac{-12±\sqrt{272}}{2\times 2}
Add 144 to 128.
k=\frac{-12±4\sqrt{17}}{2\times 2}
Take the square root of 272.
k=\frac{-12±4\sqrt{17}}{4}
Multiply 2 times 2.
k=\frac{4\sqrt{17}-12}{4}
Now solve the equation k=\frac{-12±4\sqrt{17}}{4} when ± is plus. Add -12 to 4\sqrt{17}.
k=\sqrt{17}-3
Divide -12+4\sqrt{17} by 4.
k=\frac{-4\sqrt{17}-12}{4}
Now solve the equation k=\frac{-12±4\sqrt{17}}{4} when ± is minus. Subtract 4\sqrt{17} from -12.
k=-\sqrt{17}-3
Divide -12-4\sqrt{17} by 4.
k=\sqrt{17}-3 k=-\sqrt{17}-3
The equation is now solved.
2k^{2}-16+12k=0
Use the distributive property to multiply -4 by 4-3k.
2k^{2}+12k=16
Add 16 to both sides. Anything plus zero gives itself.
\frac{2k^{2}+12k}{2}=\frac{16}{2}
Divide both sides by 2.
k^{2}+\frac{12}{2}k=\frac{16}{2}
Dividing by 2 undoes the multiplication by 2.
k^{2}+6k=\frac{16}{2}
Divide 12 by 2.
k^{2}+6k=8
Divide 16 by 2.
k^{2}+6k+3^{2}=8+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+6k+9=8+9
Square 3.
k^{2}+6k+9=17
Add 8 to 9.
\left(k+3\right)^{2}=17
Factor k^{2}+6k+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+3\right)^{2}}=\sqrt{17}
Take the square root of both sides of the equation.
k+3=\sqrt{17} k+3=-\sqrt{17}
Simplify.
k=\sqrt{17}-3 k=-\sqrt{17}-3
Subtract 3 from both sides of the equation.
2k^{2}-16+12k=0
Use the distributive property to multiply -4 by 4-3k.
2k^{2}+12k-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-12±\sqrt{12^{2}-4\times 2\left(-16\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 12 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-12±\sqrt{144-4\times 2\left(-16\right)}}{2\times 2}
Square 12.
k=\frac{-12±\sqrt{144-8\left(-16\right)}}{2\times 2}
Multiply -4 times 2.
k=\frac{-12±\sqrt{144+128}}{2\times 2}
Multiply -8 times -16.
k=\frac{-12±\sqrt{272}}{2\times 2}
Add 144 to 128.
k=\frac{-12±4\sqrt{17}}{2\times 2}
Take the square root of 272.
k=\frac{-12±4\sqrt{17}}{4}
Multiply 2 times 2.
k=\frac{4\sqrt{17}-12}{4}
Now solve the equation k=\frac{-12±4\sqrt{17}}{4} when ± is plus. Add -12 to 4\sqrt{17}.
k=\sqrt{17}-3
Divide -12+4\sqrt{17} by 4.
k=\frac{-4\sqrt{17}-12}{4}
Now solve the equation k=\frac{-12±4\sqrt{17}}{4} when ± is minus. Subtract 4\sqrt{17} from -12.
k=-\sqrt{17}-3
Divide -12-4\sqrt{17} by 4.
k=\sqrt{17}-3 k=-\sqrt{17}-3
The equation is now solved.
2k^{2}-16+12k=0
Use the distributive property to multiply -4 by 4-3k.
2k^{2}+12k=16
Add 16 to both sides. Anything plus zero gives itself.
\frac{2k^{2}+12k}{2}=\frac{16}{2}
Divide both sides by 2.
k^{2}+\frac{12}{2}k=\frac{16}{2}
Dividing by 2 undoes the multiplication by 2.
k^{2}+6k=\frac{16}{2}
Divide 12 by 2.
k^{2}+6k=8
Divide 16 by 2.
k^{2}+6k+3^{2}=8+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+6k+9=8+9
Square 3.
k^{2}+6k+9=17
Add 8 to 9.
\left(k+3\right)^{2}=17
Factor k^{2}+6k+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+3\right)^{2}}=\sqrt{17}
Take the square root of both sides of the equation.
k+3=\sqrt{17} k+3=-\sqrt{17}
Simplify.
k=\sqrt{17}-3 k=-\sqrt{17}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}