Solve for k
k=\sqrt{10}-4\approx -0.83772234
k=-\sqrt{10}-4\approx -7.16227766
Share
Copied to clipboard
2k^{2}+16k=-12
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2k^{2}+16k-\left(-12\right)=-12-\left(-12\right)
Add 12 to both sides of the equation.
2k^{2}+16k-\left(-12\right)=0
Subtracting -12 from itself leaves 0.
2k^{2}+16k+12=0
Subtract -12 from 0.
k=\frac{-16±\sqrt{16^{2}-4\times 2\times 12}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 16 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-16±\sqrt{256-4\times 2\times 12}}{2\times 2}
Square 16.
k=\frac{-16±\sqrt{256-8\times 12}}{2\times 2}
Multiply -4 times 2.
k=\frac{-16±\sqrt{256-96}}{2\times 2}
Multiply -8 times 12.
k=\frac{-16±\sqrt{160}}{2\times 2}
Add 256 to -96.
k=\frac{-16±4\sqrt{10}}{2\times 2}
Take the square root of 160.
k=\frac{-16±4\sqrt{10}}{4}
Multiply 2 times 2.
k=\frac{4\sqrt{10}-16}{4}
Now solve the equation k=\frac{-16±4\sqrt{10}}{4} when ± is plus. Add -16 to 4\sqrt{10}.
k=\sqrt{10}-4
Divide -16+4\sqrt{10} by 4.
k=\frac{-4\sqrt{10}-16}{4}
Now solve the equation k=\frac{-16±4\sqrt{10}}{4} when ± is minus. Subtract 4\sqrt{10} from -16.
k=-\sqrt{10}-4
Divide -16-4\sqrt{10} by 4.
k=\sqrt{10}-4 k=-\sqrt{10}-4
The equation is now solved.
2k^{2}+16k=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2k^{2}+16k}{2}=-\frac{12}{2}
Divide both sides by 2.
k^{2}+\frac{16}{2}k=-\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
k^{2}+8k=-\frac{12}{2}
Divide 16 by 2.
k^{2}+8k=-6
Divide -12 by 2.
k^{2}+8k+4^{2}=-6+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+8k+16=-6+16
Square 4.
k^{2}+8k+16=10
Add -6 to 16.
\left(k+4\right)^{2}=10
Factor k^{2}+8k+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+4\right)^{2}}=\sqrt{10}
Take the square root of both sides of the equation.
k+4=\sqrt{10} k+4=-\sqrt{10}
Simplify.
k=\sqrt{10}-4 k=-\sqrt{10}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}