Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

\left(2k\right)^{2}=\left(\sqrt{k^{2}+1}\right)^{2}
Square both sides of the equation.
2^{2}k^{2}=\left(\sqrt{k^{2}+1}\right)^{2}
Expand \left(2k\right)^{2}.
4k^{2}=\left(\sqrt{k^{2}+1}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4k^{2}=k^{2}+1
Calculate \sqrt{k^{2}+1} to the power of 2 and get k^{2}+1.
4k^{2}-k^{2}=1
Subtract k^{2} from both sides.
3k^{2}=1
Combine 4k^{2} and -k^{2} to get 3k^{2}.
k^{2}=\frac{1}{3}
Divide both sides by 3.
k=\frac{\sqrt{3}}{3} k=-\frac{\sqrt{3}}{3}
Take the square root of both sides of the equation.
2\times \frac{\sqrt{3}}{3}=\sqrt{\left(\frac{\sqrt{3}}{3}\right)^{2}+1}
Substitute \frac{\sqrt{3}}{3} for k in the equation 2k=\sqrt{k^{2}+1}.
\frac{2}{3}\times 3^{\frac{1}{2}}=\frac{2}{3}\times 3^{\frac{1}{2}}
Simplify. The value k=\frac{\sqrt{3}}{3} satisfies the equation.
2\left(-\frac{\sqrt{3}}{3}\right)=\sqrt{\left(-\frac{\sqrt{3}}{3}\right)^{2}+1}
Substitute -\frac{\sqrt{3}}{3} for k in the equation 2k=\sqrt{k^{2}+1}.
-\frac{2}{3}\times 3^{\frac{1}{2}}=\frac{2}{3}\times 3^{\frac{1}{2}}
Simplify. The value k=-\frac{\sqrt{3}}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
k=\frac{\sqrt{3}}{3}
Equation 2k=\sqrt{k^{2}+1} has a unique solution.