Solve for k
k=\frac{\sqrt{3}}{3}\approx 0.577350269
Share
Copied to clipboard
\left(2k\right)^{2}=\left(\sqrt{k^{2}+1}\right)^{2}
Square both sides of the equation.
2^{2}k^{2}=\left(\sqrt{k^{2}+1}\right)^{2}
Expand \left(2k\right)^{2}.
4k^{2}=\left(\sqrt{k^{2}+1}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4k^{2}=k^{2}+1
Calculate \sqrt{k^{2}+1} to the power of 2 and get k^{2}+1.
4k^{2}-k^{2}=1
Subtract k^{2} from both sides.
3k^{2}=1
Combine 4k^{2} and -k^{2} to get 3k^{2}.
k^{2}=\frac{1}{3}
Divide both sides by 3.
k=\frac{\sqrt{3}}{3} k=-\frac{\sqrt{3}}{3}
Take the square root of both sides of the equation.
2\times \frac{\sqrt{3}}{3}=\sqrt{\left(\frac{\sqrt{3}}{3}\right)^{2}+1}
Substitute \frac{\sqrt{3}}{3} for k in the equation 2k=\sqrt{k^{2}+1}.
\frac{2}{3}\times 3^{\frac{1}{2}}=\frac{2}{3}\times 3^{\frac{1}{2}}
Simplify. The value k=\frac{\sqrt{3}}{3} satisfies the equation.
2\left(-\frac{\sqrt{3}}{3}\right)=\sqrt{\left(-\frac{\sqrt{3}}{3}\right)^{2}+1}
Substitute -\frac{\sqrt{3}}{3} for k in the equation 2k=\sqrt{k^{2}+1}.
-\frac{2}{3}\times 3^{\frac{1}{2}}=\frac{2}{3}\times 3^{\frac{1}{2}}
Simplify. The value k=-\frac{\sqrt{3}}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
k=\frac{\sqrt{3}}{3}
Equation 2k=\sqrt{k^{2}+1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}