Solve for h
h\in \left(\frac{3}{2},2\right)
Share
Copied to clipboard
2h^{2}-7h+6=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
h=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 6}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -7 for b, and 6 for c in the quadratic formula.
h=\frac{7±1}{4}
Do the calculations.
h=2 h=\frac{3}{2}
Solve the equation h=\frac{7±1}{4} when ± is plus and when ± is minus.
2\left(h-2\right)\left(h-\frac{3}{2}\right)<0
Rewrite the inequality by using the obtained solutions.
h-2>0 h-\frac{3}{2}<0
For the product to be negative, h-2 and h-\frac{3}{2} have to be of the opposite signs. Consider the case when h-2 is positive and h-\frac{3}{2} is negative.
h\in \emptyset
This is false for any h.
h-\frac{3}{2}>0 h-2<0
Consider the case when h-\frac{3}{2} is positive and h-2 is negative.
h\in \left(\frac{3}{2},2\right)
The solution satisfying both inequalities is h\in \left(\frac{3}{2},2\right).
h\in \left(\frac{3}{2},2\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}