Solve for g
g=\frac{3}{2\left(x-2\right)}
x\neq 2
Solve for x
x=2+\frac{3}{2g}
g\neq 0
Graph
Share
Copied to clipboard
2gx-4g=3
Use the distributive property to multiply 2g by x-2.
\left(2x-4\right)g=3
Combine all terms containing g.
\frac{\left(2x-4\right)g}{2x-4}=\frac{3}{2x-4}
Divide both sides by 2x-4.
g=\frac{3}{2x-4}
Dividing by 2x-4 undoes the multiplication by 2x-4.
g=\frac{3}{2\left(x-2\right)}
Divide 3 by 2x-4.
2gx-4g=3
Use the distributive property to multiply 2g by x-2.
2gx=3+4g
Add 4g to both sides.
2gx=4g+3
The equation is in standard form.
\frac{2gx}{2g}=\frac{4g+3}{2g}
Divide both sides by 2g.
x=\frac{4g+3}{2g}
Dividing by 2g undoes the multiplication by 2g.
x=2+\frac{3}{2g}
Divide 3+4g by 2g.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}